"Ein Gitter in der Geometrie ist eine l\u00FCckenlose und \u00FCberlappungsfreie Partition eines Raumes durch eine Menge von Gitterzellen. Die Gitterzellen werden definiert durch eine Menge von Gitterpunkten, die untereinander durch eine Menge von Gitterlinien verbunden sind. Gitter werden in der Naturwissenschaft und Technik zur Vermessung, Modellierung und f\u00FCr numerische Berechnungen verwendet (siehe Gittermodell)."@de . . . "\u30DE\u30C3\u30D7\u30C9\u30E1\u30C3\u30B7\u30E5"@ja . . . . . . "Ein Gitter in der Geometrie ist eine l\u00FCckenlose und \u00FCberlappungsfreie Partition eines Raumes durch eine Menge von Gitterzellen. Die Gitterzellen werden definiert durch eine Menge von Gitterpunkten, die untereinander durch eine Menge von Gitterlinien verbunden sind. Gitter werden in der Naturwissenschaft und Technik zur Vermessung, Modellierung und f\u00FCr numerische Berechnungen verwendet (siehe Gittermodell)."@de . . "\u30DE\u30C3\u30D7\u30C9\u30E1\u30C3\u30B7\u30E5\uFF08mapped mesh\uFF09\u306F\u3001\u4E3B\u306B\u6570\u5024\u89E3\u6790\u3067\u4F7F\u7528\u3055\u308C\u308B\u30E1\u30C3\u30B7\u30E5\u751F\u6210\u6CD5\u306E\u4E00\u3064\u3067\u3001\u69CB\u9020\u683C\u5B50\u3092\u751F\u6210\u3059\u308B\u65B9\u6CD5\u3067\u3042\u308B\u3002\u4F5C\u6210\u65B9\u6CD5\u306E\u4E00\u3064\u3068\u3057\u3066\u3001\u6709\u9650\u8981\u7D20\u6CD5\u306E\u5F62\u72B6\u95A2\u6570\u3092\u4F7F\u7528\u3057\u3066\u4F5C\u6210\u3059\u308B\u3053\u3068\u304C\u3067\u304D\u308B\u3002"@ja . . . . . . . "Maillage"@fr . . . . . . . . . . . . . . "1122838403"^^ . . . . . . . . "Gitter (Geometrie)"@de . . . . . "3578"^^ . "Grade cartesiana"@pt . . . . "3771917"^^ . "Uma grade regular \u00E9 uma tessela\u00E7\u00E3o de um Espa\u00E7o euclidiano de n dimens\u00F5es criado por paralelep\u00EDpedos. Grades desse tipo aparecem em pap\u00E9is milimetrados e podem ser usados em M\u00E9todo dos elementos finitos, assim como em M\u00E9todo dos volumes finitos e em M\u00E9todo das diferen\u00E7as finitas. Como as derivadas de campo s\u00E3o expressas convenientemente como diferen\u00E7as finitas, grades estruturadas aparecem muito em metodos de diferen\u00E7a finita. Grades desestruturadas oferecem mais flexibilidade que grades estruturadas e, por isso, s\u00E3o mais \u00FAteis em metodos de volume e elementos finitos."@pt . . . . . . . . . . . . . . "\u30DE\u30C3\u30D7\u30C9\u30E1\u30C3\u30B7\u30E5\uFF08mapped mesh\uFF09\u306F\u3001\u4E3B\u306B\u6570\u5024\u89E3\u6790\u3067\u4F7F\u7528\u3055\u308C\u308B\u30E1\u30C3\u30B7\u30E5\u751F\u6210\u6CD5\u306E\u4E00\u3064\u3067\u3001\u69CB\u9020\u683C\u5B50\u3092\u751F\u6210\u3059\u308B\u65B9\u6CD5\u3067\u3042\u308B\u3002\u4F5C\u6210\u65B9\u6CD5\u306E\u4E00\u3064\u3068\u3057\u3066\u3001\u6709\u9650\u8981\u7D20\u6CD5\u306E\u5F62\u72B6\u95A2\u6570\u3092\u4F7F\u7528\u3057\u3066\u4F5C\u6210\u3059\u308B\u3053\u3068\u304C\u3067\u304D\u308B\u3002"@ja . . "Un maillage est la discr\u00E9tisation spatiale d'un milieu continu, ou aussi, une mod\u00E9lisation g\u00E9om\u00E9trique d\u2019un domaine par des \u00E9l\u00E9ments proportionn\u00E9s finis et bien d\u00E9finis. L'objet d'un maillage est de proc\u00E9der \u00E0 une simplification d'un syst\u00E8me par un mod\u00E8le repr\u00E9sentant ce syst\u00E8me et, \u00E9ventuellement, son environnement (le milieu), dans l'optique de simulations de calculs ou de repr\u00E9sentations graphiques. On parle \u00E9galement dans le langage commun de pavage."@fr . . . . . . . "A regular grid is a tessellation of n-dimensional Euclidean space by congruent parallelotopes (e.g. bricks). Its opposite is irregular grid. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces. Since the derivatives of field variables can be conveniently expressed as finite differences, structured grids mainly appear in finite difference methods. Unstructured grids offer more flexibility than structured grids and hence are very useful in finite element and finite volume methods. Each cell in the grid can be addressed by index (i, j) in two dimensions or (i, j, k) in three dimensions, and each vertex has coordinates in 2D or in 3D for some real numbers dx, dy, and dz representing the grid spacing."@en . . . . "Regular grid"@en . . . . . "Un maillage est la discr\u00E9tisation spatiale d'un milieu continu, ou aussi, une mod\u00E9lisation g\u00E9om\u00E9trique d\u2019un domaine par des \u00E9l\u00E9ments proportionn\u00E9s finis et bien d\u00E9finis. L'objet d'un maillage est de proc\u00E9der \u00E0 une simplification d'un syst\u00E8me par un mod\u00E8le repr\u00E9sentant ce syst\u00E8me et, \u00E9ventuellement, son environnement (le milieu), dans l'optique de simulations de calculs ou de repr\u00E9sentations graphiques. On parle \u00E9galement dans le langage commun de pavage."@fr . . . . "Uma grade regular \u00E9 uma tessela\u00E7\u00E3o de um Espa\u00E7o euclidiano de n dimens\u00F5es criado por paralelep\u00EDpedos. Grades desse tipo aparecem em pap\u00E9is milimetrados e podem ser usados em M\u00E9todo dos elementos finitos, assim como em M\u00E9todo dos volumes finitos e em M\u00E9todo das diferen\u00E7as finitas. Como as derivadas de campo s\u00E3o expressas convenientemente como diferen\u00E7as finitas, grades estruturadas aparecem muito em metodos de diferen\u00E7a finita. Grades desestruturadas oferecem mais flexibilidade que grades estruturadas e, por isso, s\u00E3o mais \u00FAteis em metodos de volume e elementos finitos. Cada c\u00E9lula na grade pode ser endere\u00E7ada pelo \u00EDndice em duas (i,j) ou tr\u00EAs (i,j,k) dimens\u00F5es, e cada v\u00E9rtice tem coordenadas em 2D ou em 3D para algum n\u00FAmero real dx, dy e dz representando o espa\u00E7o da grade."@pt . "A regular grid is a tessellation of n-dimensional Euclidean space by congruent parallelotopes (e.g. bricks). Its opposite is irregular grid. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces. Since the derivatives of field variables can be conveniently expressed as finite differences, structured grids mainly appear in finite difference methods. Unstructured grids offer more flexibility than structured grids and hence are very useful in finite element and finite volume methods."@en . . .