. . . . . "\uC0BC\uAC01 \uBD84\uD560 \uBC94\uC8FC"@ko . . . . . . . "Beilinson"@en . . . . . . . . . "Neeman"@en . "Chapter IV"@en . . . . . . "Cat\u00E9gorie triangul\u00E9e"@fr . . . . . . . . . . "2001"^^ . . . "2006"^^ . "Triangulated category"@en . . . . . "Introduction"@en . . "yes"@en . . . "Manin"@en . "\uD638\uBAB0\uB85C\uC9C0 \uB300\uC218\uD559\uC5D0\uC11C \uC0BC\uAC01 \uBD84\uD560 \uBC94\uC8FC(\u4E09\u89D2\u5206\u5272\u7BC4\u7587, \uC601\uC5B4: triangulated category)\uB294 \uC720\uB3C4 \uBC94\uC8FC \uBC0F \uC548\uC815 \uD638\uBAA8\uD1A0\uD53C \uBC94\uC8FC\uC640 \uC720\uC0AC\uD55C \uC131\uC9C8\uC744 \uAC00\uC9C0\uB294 \uBC94\uC8FC\uC774\uB2E4. \uC774 \uC704\uC5D0 \uC77C\uBC18\uC801\uC778 \uCF54\uD638\uBAB0\uB85C\uC9C0 \uD568\uC790\uC758 \uAC1C\uB150\uC744 \uC815\uC758\uD560 \uC218 \uC788\uB2E4."@ko . . . . "Hartshorne"@en . . . . . . . . . . . . . . . . . . "37250"^^ . "Triangulierte Kategorie ist ein Begriff aus der homologischen Algebra. Triangulierte Kategorien bieten einen gemeinsamen Rahmen f\u00FCr derivierte Kategorien und f\u00FCr die stabilen Modulkategorien der Darstellungstheorie. Urspr\u00FCnglich wurden sie durch Verdier eingef\u00FChrt, um derivierte Funktoren der algebraischen Geometrie zu studieren."@de . . . . . . . "1097998750"^^ . . . . . "In mathematics, a triangulated category is a category with the additional structure of a \"translation functor\" and a class of \"exact triangles\". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology."@en . . . . . . . "Bernstein"@en . . . "Gelfand"@en . . . . . . . . . "En math\u00E9matiques, une cat\u00E9gorie triangul\u00E9e est une cat\u00E9gorie dot\u00E9e d'une structure suppl\u00E9mentaire. De telles cat\u00E9gories ont \u00E9t\u00E9 sugg\u00E9r\u00E9es par Alexander Grothendieck et d\u00E9velopp\u00E9es par Jean-Louis Verdier dans sa th\u00E8se de 1963 pour traiter les cat\u00E9gories d\u00E9riv\u00E9es. La notion de t-structure, qui y est directement li\u00E9e, permet de reconstruire (en un sens partiel) une cat\u00E9gorie \u00E0 partir d'une cat\u00E9gorie d\u00E9riv\u00E9e."@fr . . . . . . . "In mathematics, a triangulated category is a category with the additional structure of a \"translation functor\" and a class of \"exact triangles\". Prominent examples are the derived category of an abelian category, as well as the stable homotopy category. The exact triangles generalize the short exact sequences in an abelian category, as well as fiber sequences and cofiber sequences in topology. Much of homological algebra is clarified and extended by the language of triangulated categories, an important example being the theory of sheaf cohomology. In the 1960s, a typical use of triangulated categories was to extend properties of sheaves on a space X to complexes of sheaves, viewed as objects of the derived category of sheaves on X. More recently, triangulated categories have become objects of interest in their own right. Many equivalences between triangulated categories of different origins have been proved or conjectured. For example, the homological mirror symmetry conjecture predicts that the derived category of a Calabi\u2013Yau manifold is equivalent to the Fukaya category of its \"mirror\" symplectic manifold."@en . . "\uD638\uBAB0\uB85C\uC9C0 \uB300\uC218\uD559\uC5D0\uC11C \uC0BC\uAC01 \uBD84\uD560 \uBC94\uC8FC(\u4E09\u89D2\u5206\u5272\u7BC4\u7587, \uC601\uC5B4: triangulated category)\uB294 \uC720\uB3C4 \uBC94\uC8FC \uBC0F \uC548\uC815 \uD638\uBAA8\uD1A0\uD53C \uBC94\uC8FC\uC640 \uC720\uC0AC\uD55C \uC131\uC9C8\uC744 \uAC00\uC9C0\uB294 \uBC94\uC8FC\uC774\uB2E4. \uC774 \uC704\uC5D0 \uC77C\uBC18\uC801\uC778 \uCF54\uD638\uBAB0\uB85C\uC9C0 \uD568\uC790\uC758 \uAC1C\uB150\uC744 \uC815\uC758\uD560 \uC218 \uC788\uB2E4."@ko . . . "1966"^^ . . . . . . . . "En math\u00E9matiques, une cat\u00E9gorie triangul\u00E9e est une cat\u00E9gorie dot\u00E9e d'une structure suppl\u00E9mentaire. De telles cat\u00E9gories ont \u00E9t\u00E9 sugg\u00E9r\u00E9es par Alexander Grothendieck et d\u00E9velopp\u00E9es par Jean-Louis Verdier dans sa th\u00E8se de 1963 pour traiter les cat\u00E9gories d\u00E9riv\u00E9es. La notion de t-structure, qui y est directement li\u00E9e, permet de reconstruire (en un sens partiel) une cat\u00E9gorie \u00E0 partir d'une cat\u00E9gorie d\u00E9riv\u00E9e."@fr . . . . "Deligne"@en . . "Triangulierte Kategorie"@de . . . "1679700"^^ . . . . . . "1982"^^ . . . . . "Triangulierte Kategorie ist ein Begriff aus der homologischen Algebra. Triangulierte Kategorien bieten einen gemeinsamen Rahmen f\u00FCr derivierte Kategorien und f\u00FCr die stabilen Modulkategorien der Darstellungstheorie. Urspr\u00FCnglich wurden sie durch Verdier eingef\u00FChrt, um derivierte Funktoren der algebraischen Geometrie zu studieren."@de . . . . . .