About: Adjoint equation     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/v9wzonZUg

An adjoint equation is a linear differential equation, usually derived from its primal equation using integration by parts. Gradient values with respect to a particular quantity of interest can be efficiently calculated by solving the adjoint equation. Methods based on solution of adjoint equations are used in wing shape optimization, fluid flow control and uncertainty quantification. For example this is an Itō stochastic differential equation. Now by using Euler scheme, we integrate the parts of this equation and get another equation, , here is a random variable, later one is an adjoint equation.

AttributesValues
rdfs:label
  • Adjoint equation (en)
  • Сопряжённые уравнения (ru)
rdfs:comment
  • An adjoint equation is a linear differential equation, usually derived from its primal equation using integration by parts. Gradient values with respect to a particular quantity of interest can be efficiently calculated by solving the adjoint equation. Methods based on solution of adjoint equations are used in wing shape optimization, fluid flow control and uncertainty quantification. For example this is an Itō stochastic differential equation. Now by using Euler scheme, we integrate the parts of this equation and get another equation, , here is a random variable, later one is an adjoint equation. (en)
  • Сопряжённые уравнения — уравнения с операторами, сопряжёнными друг другу: ,. Широко используются в решении задач математической физики. Зачастую практическое значение имеет не само решение задачи , а значение линейного функционала . Учитывая, что , видно, что вместо решения многих уравнений с разными правыми частями можно один раз решить сопряжённое уравнение, после чего просто вычислять значение функционала. (ru)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • An adjoint equation is a linear differential equation, usually derived from its primal equation using integration by parts. Gradient values with respect to a particular quantity of interest can be efficiently calculated by solving the adjoint equation. Methods based on solution of adjoint equations are used in wing shape optimization, fluid flow control and uncertainty quantification. For example this is an Itō stochastic differential equation. Now by using Euler scheme, we integrate the parts of this equation and get another equation, , here is a random variable, later one is an adjoint equation. (en)
  • Сопряжённые уравнения — уравнения с операторами, сопряжёнными друг другу: ,. Широко используются в решении задач математической физики. Зачастую практическое значение имеет не само решение задачи , а значение линейного функционала . Учитывая, что , видно, что вместо решения многих уравнений с разными правыми частями можно один раз решить сопряжённое уравнение, после чего просто вычислять значение функционала. (ru)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software