rdfs:comment
| - Bezesporná teorie (také konzistentní teorie) je označení používané v matematické logice pro formální teorii, která neobsahuje spor; v opačném případě se používá označení sporná teorie. (cs)
- Konsistensi dalam ilmu logika adalah teori konsistensi merupakan sebuah semantik dengan semantik yang lainnya tidak mengandung kontradiksi. Tidak adanya kontradiksi dapat diartikan baik dalam hal semantik atau berhubung dengan sintaksis. Definisi semantik yang menyatakan bahwa sebuah teori yang konsisten jika ia memiliki model; ini digunakan dalam arti logika tradisional Aristoteles walaupun dalam logika matematika kontemporer terdapat istilah satisfiable yang digunakan. Berhubungan dengan pengertian sintaksis yang menyatakan bahwa sebuah teori yang konsisten jika tidak terdapat rumus P seperti yang kedua P dan penyangkalan adalah pembuktian dari aksioma dari teori yang terkait di bawah sistem deduktif. (in)
- 数学基礎論において、無矛盾性 (英: consistency) は公理系の最も重要な概念の一つである。 (ja)
- 수리논리학에서 무모순적 이론(無矛盾的理論, 영어: consistent theory)은 거짓을 추론할 수 없는 이론이다. 이러한 성질을 무모순성(無矛盾性, 영어: consistency) 또는 일관성(一貫性)이라고 한다. 즉, 무모순적 이론에서는 스스로와 그 부정을 모두 증명할 수 있는 문장이 존재하지 않는다. 반대로 모순적인 이론은 모든 문장이 증명 가능하므로 무의미한 이론이 된다. (ko)
- Consistent betekent in de logica: innerlijk samenhangend en niet tegenstrijdig, inconsistent is daarvan het antoniem en betekent: tegenstrijdig en niet innerlijk samenhangend. Kurt Gödel heeft bewezen dat geen enkel systeem dat de wiskunde probeert te formaliseren zowel consistent als kan zijn. Dit heet de onvolledigheidsstelling. (nl)
- Несуперечність — властивість формальної системи, що полягає в невиводимості з неї суперечності. Якщо заперечення якогось речення (сукупності абстрактних об'єктів) з системи може бути доведено в теорії, то про саме речення йдеться, що воно спростовне в ній. Несуперечливість системи означає, що ніяке речення (судження) не може бути в ній і доведене, і в той же час спростоване. Вимога несуперечності є обов'язковою вимогою до наукової і, зокрема, логічної теорії. Суперечлива система свідомо недосконала: поряд з істинними положеннями вона включає також хибні, в ній щось одночасно і доводиться, і спростовується. У багатьох системах має місце закон Дунса Скота. Доказовість протиріччя означає, що в цих умовах стає доказовим що завгодно. (uk)
- 邏輯上,一致性(consistency)、相容性、自洽性,是指一個形式系統中不蘊涵矛盾。 所謂的矛盾有二種解讀方式:
* 語義上:當一個命題S是由許多命題組成時,如果所有命題可同時為真,則S是一致的,否則S是不一致的。
* 語法上:公理系統不能推導出兩個相反的結果。亦即不存在命題P,使得P→Q和P→~Q同時成立。 (zh)
- الاتساق يقال في علم المنطق عن نظرية أنها متناسقة عندما تخلو من أي تناقضات، والاتساق (عدم التناقض) هو مقياس الصواب والخطأ في العلوم الصورية (المنطق والرياضيات)، أما العلوم الطبيعية فإن مقياس الصواب والخطأ فيها هو تطابق النتائج مع الواقع. (ar)
- In classical deductive logic, a consistent theory is one that does not lead to a logical contradiction. The lack of contradiction can be defined in either semantic or syntactic terms. The semantic definition states that a theory is consistent if it has a model, i.e., there exists an interpretation under which all formulas in the theory are true. This is the sense used in traditional Aristotelian logic, although in contemporary mathematical logic the term satisfiable is used instead. The syntactic definition states a theory is consistent if there is no formula such that both and its negation are elements of the set of consequences of . Let be a set of closed sentences (informally "axioms") and the set of closed sentences provable from under some (specified, possibly implicitly) forma (en)
- In der Logik gilt eine Menge von Aussagen als konsistent oder widerspruchsfrei, wenn aus ihr kein Widerspruch abgeleitet werden kann, also kein Ausdruck und zugleich dessen Negation. Da man mit inkonsistenten Aussagenmengen Beliebiges beweisen könnte, auch Unsinniges, ist die Widerspruchsfreiheit unerlässlich für brauchbare wissenschaftliche Theorien, logische Kalküle oder mathematische Axiomensysteme. (de)
- En metalógica, la consistencia o consistencia lógica es la propiedad que tienen los sistemas formales cuando no es posible deducir una contradicción dentro del sistema. Es decir, dado un lenguaje formal y un aparato deductivo (axiomas y reglas de inferencia), no es posible deducir una fórmula y su negación. La existencia de un modelo implica que una teoría lógica es consistente. (es)
- En logique mathématique, la cohérence, ou consistance, d'une théorie axiomatique peut se définir de deux façons, soit par référence à la déduction : il n'est pas possible de tout démontrer à partir des axiomes de la théorie, soit par référence à la sémantique de la théorie : celle-ci possède des réalisations qui lui donnent un sens. (fr)
- In logica matematica, una teoria formale si dice coerente (o non contraddittoria, talvolta anche consistente, per assonanza con l'inglese consistent) se in essa è impossibile dimostrare una contraddizione. A priori si distinguono due livelli di coerenza:
* coerenza sintattica se nella teoria non si possono dimostrare contemporaneamente una formula ben formata e la sua negazione;
* coerenza semantica se la teoria ammette almeno un modello. Un esempio semplice di teoria del primo ordine non coerente è dato dalla teoria che ha un unico simbolo predicativo P e come unico assioma: (it)
- Niesprzeczność – brak sprzeczności teorii logicznej. Można go zdefiniować semantycznie albo syntaktycznie. Definicja semantyczna postuluje, że teoria jest niesprzeczna, jeśli posiada model. Odpowiada to pojęciu niesprzeczności w tradycyjnej logice Arystotelesa, aczkolwiek w dzisiejszej logice matematycznej używa się w zamian określenia spełnialności. Definicja syntaktyczna mówi, że teoria jest niesprzeczna, jeśli nie ma takiej formuły że zarówno jak i jej zaprzeczenie można wyprowadzić z aksjomatów danej teorii za pomocą powiązanego z nią systemu dedukcji. (pl)
- Непротиворечи́вость — свойство формальной системы, заключающееся в невыводимости из неё противоречия. Если отрицание какого-то предложения из системы может быть доказано в теории, то о самом предложении говорится, что оно опровержимо в ней. Непротиворечивость системы означает, что никакое предложение не может быть в ней и доказано, и вместе с тем опровергнуто. Требование непротиворечивости является обязательным требованием к научной и, в частности, логической теории. Противоречивая система заведомо несовершенна: наряду с истинными положениями она включает также ложные; в ней что-то одновременно и доказывается, и опровергается. Во многих системах имеет место закон Дунса Скота. В этих условиях доказуемость противоречия означает, что становится доказуемым. (ru)
- Na lógica uma teoria consistente é uma que não contenha uma contradição. A falta de contradições pode ser definida em termos semânticos ou sintáticos. A definição semântica estabelece que uma teoria é consistente se e somente se tiver um modelo, ou seja, existe uma interpretação segundo a qual todas as fórmulas são verdadeiras. A definição sintática estabelece que uma teoria é consistente se e somente se não há fórmula P tal que P e sua negação são demonstráveis a partir dos axiomas da teoria sob o seu sistema associado dedutivo. (pt)
- Na lógica clássica dedutiva, uma teoria é chamada de consistente se não contém contradição. A ausência de contradição pode ser definida tanto em termos sintáticos como em termos semânticos. A definição semântica diz que uma teoria é consistente, se e somente se, tem um modelo, i.e. existe uma interpretação sob as quais todas as fórmulas são verdadeiras. Essa é a compreensão usada na lógica aristotélica, embora na lógica matemática contemporânea o termo usado é satisfatível. A definição sintática diz que uma teoria é consistente, se e somente se, não existe nenhuma fórmula P, tal que tanto P como sua negação são demonstráveis a partir dos axiomas da teoria do sistema dedutivo, as quais estão associados. (pt)
- Konsistens (av latinets consistere, "bestå", "hålla") är ett semantiskt begrepp inom logiken. Det härrör från kravet att ett logiskt system inte skall innehålla något teorem som är en självmotsägelse. Således skall i ett formellt system, en axiomuppsättning eller en teori inte kunna härledas två teorem, av vilka det ena är det andras negation. Enkel konsistens. Ett system S är enkelt konsistent om och endast om för ingen formel A i S, både A och negationen av A är teorem i S. Absolut konsistens. Ett system är absolut konsistent om och endast om åtminstone en formel i S inte är ett teorem i S. (sv)
|