About: Gentzen's consistency proof     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2PyzyS8GX1

Gentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms. Gentzen argued that it avoids the questionable modes of inference contained in Peano arithmetic and that its consistency is therefore less controversial.

AttributesValues
rdfs:label
  • Gentzen's consistency proof (en)
  • 겐첸의 일관성 증명 (ko)
rdfs:comment
  • Gentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms. Gentzen argued that it avoids the questionable modes of inference contained in Peano arithmetic and that its consistency is therefore less controversial. (en)
  • 겐첸의 일관성 증명 또는 겐첸의 무모순성 증명은 1936년 게르하르트 겐첸이 발표한 수리 논리학의 갈래인 증명 이론의 결과이다. 이는 1차 산술의 페아노 공리가 증명에 사용된 어떤 다른 체계도 모순을 포함하지 않는 한 모순을 포함하지 않는다는 것을 보인다(즉, '무모순적'이다). 오늘날 "서수 ε0까지의 양화사-자유 초한귀납법의 추가 원리를 가진 원시적 재귀 산술"이라고 불리는 이 다른 체계는 페아노 공리 체계보다 약하지도 강하지도 않다. 겐첸은 페아노 산술에 포함된 의심스러운 추론 방식을 피하고 따라서 그 일관성은 논란의 여지가 적다고 주장했다. (ko)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • Gentzen's consistency proof is a result of proof theory in mathematical logic, published by Gerhard Gentzen in 1936. It shows that the Peano axioms of first-order arithmetic do not contain a contradiction (i.e. are "consistent"), as long as a certain other system used in the proof does not contain any contradictions either. This other system, today called "primitive recursive arithmetic with the additional principle of quantifier-free transfinite induction up to the ordinal ε0", is neither weaker nor stronger than the system of Peano axioms. Gentzen argued that it avoids the questionable modes of inference contained in Peano arithmetic and that its consistency is therefore less controversial. (en)
  • 겐첸의 일관성 증명 또는 겐첸의 무모순성 증명은 1936년 게르하르트 겐첸이 발표한 수리 논리학의 갈래인 증명 이론의 결과이다. 이는 1차 산술의 페아노 공리가 증명에 사용된 어떤 다른 체계도 모순을 포함하지 않는 한 모순을 포함하지 않는다는 것을 보인다(즉, '무모순적'이다). 오늘날 "서수 ε0까지의 양화사-자유 초한귀납법의 추가 원리를 가진 원시적 재귀 산술"이라고 불리는 이 다른 체계는 페아노 공리 체계보다 약하지도 강하지도 않다. 겐첸은 페아노 산술에 포함된 의심스러운 추론 방식을 피하고 따라서 그 일관성은 논란의 여지가 적다고 주장했다. (ko)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software