About: Crout matrix decomposition     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:VectorAlgebra106013298, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/44r7dWuBC7

In linear algebra, the Crout matrix decomposition is an LU decomposition which decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U) and, although not always needed, a permutation matrix (P). It was developed by Prescott Durand Crout. The Crout matrix decomposition algorithm differs slightly from the Doolittle method. Doolittle's method returns a unit lower triangular matrix and an upper triangular matrix, while the Crout method returns a lower triangular matrix and a unit upper triangular matrix. So, if a matrix decomposition of a matrix A is such that: A = LDU

AttributesValues
rdf:type
rdfs:label
  • Crout matrix decomposition (en)
  • Crout-decompositie (nl)
rdfs:comment
  • De Crout-decompositie is een algoritme voor de LU-decompositie van een vierkante niet-singuliere matrix in een benedendriehoeksmatrix en een bovendriehoeksmatrix In de matrix zijn de elementen op de hoofddiagonaal gelijk aan 1. De methode is genoemd naar , wiskundige aan het Massachusetts Institute of Technology die ze in 1941 beschreef. (nl)
  • In linear algebra, the Crout matrix decomposition is an LU decomposition which decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U) and, although not always needed, a permutation matrix (P). It was developed by Prescott Durand Crout. The Crout matrix decomposition algorithm differs slightly from the Doolittle method. Doolittle's method returns a unit lower triangular matrix and an upper triangular matrix, while the Crout method returns a lower triangular matrix and a unit upper triangular matrix. So, if a matrix decomposition of a matrix A is such that: A = LDU (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In linear algebra, the Crout matrix decomposition is an LU decomposition which decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U) and, although not always needed, a permutation matrix (P). It was developed by Prescott Durand Crout. The Crout matrix decomposition algorithm differs slightly from the Doolittle method. Doolittle's method returns a unit lower triangular matrix and an upper triangular matrix, while the Crout method returns a lower triangular matrix and a unit upper triangular matrix. So, if a matrix decomposition of a matrix A is such that: A = LDU being L a unit lower triangular matrix, D a diagonal matrix and U a unit upper triangular matrix, then Doolittle's method produces A = L(DU) and Crout's method produces A = (LD)U. (en)
  • De Crout-decompositie is een algoritme voor de LU-decompositie van een vierkante niet-singuliere matrix in een benedendriehoeksmatrix en een bovendriehoeksmatrix In de matrix zijn de elementen op de hoofddiagonaal gelijk aan 1. De methode is genoemd naar , wiskundige aan het Massachusetts Institute of Technology die ze in 1941 beschreef. (nl)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 55 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software