About: Dickson's conjecture     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatPrimeNumbers, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/bBoC2NBs1

In number theory, a branch of mathematics, Dickson's conjecture is the conjecture stated by Dickson that for a finite set of linear forms a1 + b1n, a2 + b2n, ..., ak + bkn with bi ≥ 1, there are infinitely many positive integers n for which they are all prime, unless there is a congruence condition preventing this . The case k = 1 is Dirichlet's theorem. Two other special cases are well-known conjectures: there are infinitely many twin primes (n and 2 + n are primes), and there are infinitely many Sophie Germain primes (n and 1 + 2n are primes).

AttributesValues
rdf:type
rdfs:label
  • Conjetura de Dickson (es)
  • Dickson's conjecture (en)
  • Conjecture de Dickson (fr)
  • Гипотеза Диксона (ru)
  • 狄克森猜想 (zh)
rdfs:comment
  • Гипотеза Диксона — теоретико-числовое предположение, высказанное в 1904 году, утверждающее, что для любого конечного набора линейных форм при , имеется бесконечно много натуральных чисел n, для которых все значения форм будут простыми одновременно, если только не существует сравнение по некоторому простому модулю, сразу исключающее эту возможность. (ru)
  • 在 数论中, 狄克森猜想 是指任何有限多个一次多项式 a1 + b1n, a2 + b2n,..., ak + bkn ,滿足 bi ≥ 1, 都有无穷多个正整数n,使得這些多项式的值都是 素数,除非有 素数p,使得不管n是多少,当中都至少有某個多项式的值被p整除, k = 1的情形为 狄利克雷定理。 两个特殊情况都是众所周知的猜想:有无限多组 孪生素数 (n 和2 + n 都是素数),以及有无限多个 索菲热尔曼素数 (n 和1 + 2n 都是素数). 狄克森猜想的推广为. (zh)
  • In number theory, a branch of mathematics, Dickson's conjecture is the conjecture stated by Dickson that for a finite set of linear forms a1 + b1n, a2 + b2n, ..., ak + bkn with bi ≥ 1, there are infinitely many positive integers n for which they are all prime, unless there is a congruence condition preventing this . The case k = 1 is Dirichlet's theorem. Two other special cases are well-known conjectures: there are infinitely many twin primes (n and 2 + n are primes), and there are infinitely many Sophie Germain primes (n and 1 + 2n are primes). (en)
  • En théorie des nombres, la conjecture de Dickson est une conjecture émise par Leonard Eugene Dickson, selon laquelle pour un ensemble fini de k suites arithmétiques ,,..., avec bi ≥ 1, il existe une infinité d'entiers positifs n pour lesquels les nombres correspondants sont tous premiers, excepté s'il existe une condition de congruence qui empêche cela . Le cas k=1 est le théorème de Dirichlet. La conjecture de Dickson a été par la suite généralisée par l'hypothèse H de Schinzel. (fr)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In number theory, a branch of mathematics, Dickson's conjecture is the conjecture stated by Dickson that for a finite set of linear forms a1 + b1n, a2 + b2n, ..., ak + bkn with bi ≥ 1, there are infinitely many positive integers n for which they are all prime, unless there is a congruence condition preventing this . The case k = 1 is Dirichlet's theorem. Two other special cases are well-known conjectures: there are infinitely many twin primes (n and 2 + n are primes), and there are infinitely many Sophie Germain primes (n and 1 + 2n are primes). Dickson's conjecture is further extended by Schinzel's hypothesis H. (en)
  • En théorie des nombres, la conjecture de Dickson est une conjecture émise par Leonard Eugene Dickson, selon laquelle pour un ensemble fini de k suites arithmétiques ,,..., avec bi ≥ 1, il existe une infinité d'entiers positifs n pour lesquels les nombres correspondants sont tous premiers, excepté s'il existe une condition de congruence qui empêche cela . Le cas k=1 est le théorème de Dirichlet. Deux cas particuliers sont des conjectures célèbres et non résolues : l'existence d'une infinité de nombres premiers jumeaux (n et n+2 sont premiers), et d'une infinité de nombres premiers de Sophie Germain (n et 2n+1 sont premiers). La conjecture de Dickson a été par la suite généralisée par l'hypothèse H de Schinzel. (fr)
  • Гипотеза Диксона — теоретико-числовое предположение, высказанное в 1904 году, утверждающее, что для любого конечного набора линейных форм при , имеется бесконечно много натуральных чисел n, для которых все значения форм будут простыми одновременно, если только не существует сравнение по некоторому простому модулю, сразу исключающее эту возможность. (ru)
  • 在 数论中, 狄克森猜想 是指任何有限多个一次多项式 a1 + b1n, a2 + b2n,..., ak + bkn ,滿足 bi ≥ 1, 都有无穷多个正整数n,使得這些多项式的值都是 素数,除非有 素数p,使得不管n是多少,当中都至少有某個多项式的值被p整除, k = 1的情形为 狄利克雷定理。 两个特殊情况都是众所周知的猜想:有无限多组 孪生素数 (n 和2 + n 都是素数),以及有无限多个 索菲热尔曼素数 (n 和1 + 2n 都是素数). 狄克森猜想的推广为. (zh)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is generalizations of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software