In mathematics, an elliptic Gauss sum is an analog of a Gauss sum depending on an elliptic curve with complex multiplication. The quadratic residue symbol in a Gauss sum is replaced by a higher residue symbol such as a cubic or quartic residue symbol, and the exponential function in a Gauss sum is replaced by an elliptic function.They were introduced by Eisenstein, at least in the lemniscate case when the elliptic curve has complex multiplication by i, but seem to have been forgotten or ignored until the paper.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Elliptic Gauss sum (en)
- Elliptisk Gaussumma (sv)
|
rdfs:comment
| - In mathematics, an elliptic Gauss sum is an analog of a Gauss sum depending on an elliptic curve with complex multiplication. The quadratic residue symbol in a Gauss sum is replaced by a higher residue symbol such as a cubic or quartic residue symbol, and the exponential function in a Gauss sum is replaced by an elliptic function.They were introduced by Eisenstein, at least in the lemniscate case when the elliptic curve has complex multiplication by i, but seem to have been forgotten or ignored until the paper. (en)
- Inom matematiken är en elliptisk Gaussumma en analogi av som beror på en elliptisk kurva med komplex multiplikation. Legendresymbolen i Gaussumman ersätts med en högre restsymbol och exponentialfunktionen i Gaussumman ersätts med en elliptisk funktion.Elliptiska Gaussummor introducerades av Gotthold Eisenstein 1850. (sv)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In mathematics, an elliptic Gauss sum is an analog of a Gauss sum depending on an elliptic curve with complex multiplication. The quadratic residue symbol in a Gauss sum is replaced by a higher residue symbol such as a cubic or quartic residue symbol, and the exponential function in a Gauss sum is replaced by an elliptic function.They were introduced by Eisenstein, at least in the lemniscate case when the elliptic curve has complex multiplication by i, but seem to have been forgotten or ignored until the paper. (en)
- Inom matematiken är en elliptisk Gaussumma en analogi av som beror på en elliptisk kurva med komplex multiplikation. Legendresymbolen i Gaussumman ersätts med en högre restsymbol och exponentialfunktionen i Gaussumman ersätts med en elliptisk funktion.Elliptiska Gaussummor introducerades av Gotthold Eisenstein 1850. (sv)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |