About: Itô's lemma     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatProbabilityTheorems, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/37cMEZTTWh

In mathematics, Itô's lemma or Itô's formula (also called the Itô-Doeblin formula, especially in French literature) is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values.

AttributesValues
rdf:type
rdfs:label
  • Lemma von Itō (de)
  • Lema de Itô (es)
  • Lemme d'Itō (fr)
  • Lemma di Itō (it)
  • Itô's lemma (en)
  • 이토의 보조정리 (ko)
  • 伊藤の補題 (ja)
  • Lema de Itō (pt)
  • Формула Ито (ru)
  • Itōs lemma (sv)
  • Формула Іто (uk)
  • 伊藤引理 (zh)
rdfs:comment
  • Das Lemma von Itō (auch Itō-Formel oder Itō-Döblin-Formel), benannt nach dem japanischen Mathematiker Itō Kiyoshi, ist eine zentrale Aussage in der stochastischen Analysis. In seiner einfachsten Form ist es eine Integraldarstellung für stochastische Prozesse, die Funktionen eines Wiener-Prozesses sind. Es entspricht damit der Kettenregel bzw. Substitutionsregel der klassischen Differential- und Integralrechnung. (de)
  • In mathematics, Itô's lemma or Itô's formula (also called the Itô-Doeblin formula, especially in French literature) is an identity used in Itô calculus to find the differential of a time-dependent function of a stochastic process. It serves as the stochastic calculus counterpart of the chain rule. It can be heuristically derived by forming the Taylor series expansion of the function up to its second derivatives and retaining terms up to first order in the time increment and second order in the Wiener process increment. The lemma is widely employed in mathematical finance, and its best known application is in the derivation of the Black–Scholes equation for option values. (en)
  • En matemáticas, el lema de Itô es una identidad utilizada en cálculo de Itô para encontrar la diferencial de una función temporal dependiente de un proceso estocástico. Es una versión estocástica de la regla de la cadena del cálculo diferencial usual. El lema es ampliamente utilizado en matemáticas financieras y su aplicación más conocida es para obtener la ecuación de Black-Scholes. (es)
  • Le lemme d'Itô, ou encore formule d'Itô est l'un des principaux résultats de la théorie du calcul stochastique. Ce lemme offre un moyen de manipuler le mouvement brownien ou les solutions d'équations différentielles stochastiques (EDS). (fr)
  • 伊藤の補題(いとうのほだい、Itō's/Itô's lemma)は、確率微分方程式の確率過程に関する積分を簡便に計算するための方法である。伊藤清が考案した。 (ja)
  • Itōs lemma (Itōs formel) är ett berömt resultat inom den gren av matematiken som kallas (stokastisk kalkyl). Det är uppkallat efter Kiyoshi Itō. Det är en av de tre fundamentala resultaten på vilka teorin för stokastisk analys är konstruerad: * Den för Wienerprocessen. * Konstruktionerna av begreppet . * Itōs lemma. (sv)
  • Лема Іто використовується в стохастичному аналізі для знаходження диференціалу від функції, аргументом якої є випадковий процес. Назву отримала на честь японського математика . Лема є аналогом правила диференціювання складної функції в звичайному математичному аналізі. Її найкраще можна запам'ятати, використовуючи розклад функції в ряд Тейлора до другого степеня по випадковому компоненту функції. Результат широко використовується у фінансовій математиці, зокрема у формулі Блека — Шоулза для оцінки вартості кол-опціонів. Формулу іноді називають теоремою Іто — Добліна на честь Вольвганга Добліна, який також її вивів, але його записки були знайдені і оприлюднені тільки в 2000 році. (uk)
  • Формула Ито — формула замены переменной в стохастическом дифференциальном уравнении. Автор формулы Ито Киёси — японский математик-статистик. (ru)
  • 在随机分析中,伊藤引理(Ito's lemma)是一条非常重要的性质。發現者為日本數學家伊藤清,他指出了对于一个随机过程的函数作微分的规则。 (zh)
  • In matematica, il lemma di Itō ("Formula di Itō") è usato nel al fine di computare il differenziale di una funzione di un particolare tipo di processo stocastico. Trova ampio impiego nella matematica finanziaria. Dal lemma di Itō si ricava l'integrale di Itō, che estende e generalizza l'integrale di Riemann per funzioni stocastiche. Diversamente dall'integrale di Riemann, non ha un significato geometrico, non è un'area. (it)
  • Em matemática, o lema de Itō é uma identidade usada em cálculo de Itō para encontrar a diferencial de uma função dependente do tempo de um processo estocástico. É o análogo em cálculo estocástico da regra da cadeia do cálculo comum. Pode ser heuristicamente derivado pela formação da expansão da série de Taylor de uma função, separando suas derivadas de segunda ordem e retendo termos até a primeira ordem no incremento do tempo e a segunda ordem no incremento de processo de Wiener. O lema é amplamente empregado em matemática financeira e sua aplicação mais conhecida é a derivação da equação de Black-Scholes para valores de opção. (pt)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 61 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software