About: Jacquet–Langlands correspondence     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Organisation, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/96uZm13Pay

In mathematics, the Jacquet–Langlands correspondence is a correspondence between automorphic forms on GL2 and its twisted forms, proved by Jacquet and Langlands in their book Automorphic Forms on GL(2) using the Selberg trace formula. It was one of the first examples of the Langlands philosophy that maps between L-groups should induce maps between automorphic representations. There are generalized versions of the Jacquet–Langlands correspondence relating automorphic representations of GLr(D) and GLdr(F), where D is a division algebra of degree d2 over the local or global field F.

AttributesValues
rdf:type
rdfs:label
  • Correspondance de Jacquet-Langlands (fr)
  • Jacquet–Langlands correspondence (en)
rdfs:comment
  • In mathematics, the Jacquet–Langlands correspondence is a correspondence between automorphic forms on GL2 and its twisted forms, proved by Jacquet and Langlands in their book Automorphic Forms on GL(2) using the Selberg trace formula. It was one of the first examples of the Langlands philosophy that maps between L-groups should induce maps between automorphic representations. There are generalized versions of the Jacquet–Langlands correspondence relating automorphic representations of GLr(D) and GLdr(F), where D is a division algebra of degree d2 over the local or global field F. (en)
  • En mathématiques, la correspondance de Jacquet-Langlands est une correspondance entre les formes automorphes du GL2 et ses formes elliptiques, prouvée par Hervé Jacquet et Robert Langlands notamment grâce à la Formule des traces de Selberg. Ce fut l'un des premiers exemples de la qui conjecture que les applications entre induisent des applications entre . Il existe des versions généralisées de cette première correspondance de Jacquet-Langlands qui relie les représentations automorphes de GLr(D) et GLdr(F), où D est une algèbre à division de degrée d2 sur le corps local ou global F. (fr)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
last
  • Langlands (en)
  • Jacquet (en)
year
loc
  • section 16 (en)
has abstract
  • In mathematics, the Jacquet–Langlands correspondence is a correspondence between automorphic forms on GL2 and its twisted forms, proved by Jacquet and Langlands in their book Automorphic Forms on GL(2) using the Selberg trace formula. It was one of the first examples of the Langlands philosophy that maps between L-groups should induce maps between automorphic representations. There are generalized versions of the Jacquet–Langlands correspondence relating automorphic representations of GLr(D) and GLdr(F), where D is a division algebra of degree d2 over the local or global field F. Suppose that G is an inner twist of the algebraic group GL2, in other words the multiplicative group of a quaternion algebra. The Jacquet–Langlands correspondence is bijection between * Automorphic representations of G of dimension greater than 1 * Cuspidal automorphic representations of GL2 that are square integrable (modulo the center) at each ramified place of G. Corresponding representations have the same local components at all unramified places of G. and extended the Jacquet–Langlands correspondence to division algebras of higher dimension. (en)
  • En mathématiques, la correspondance de Jacquet-Langlands est une correspondance entre les formes automorphes du GL2 et ses formes elliptiques, prouvée par Hervé Jacquet et Robert Langlands notamment grâce à la Formule des traces de Selberg. Ce fut l'un des premiers exemples de la qui conjecture que les applications entre induisent des applications entre . Il existe des versions généralisées de cette première correspondance de Jacquet-Langlands qui relie les représentations automorphes de GLr(D) et GLdr(F), où D est une algèbre à division de degrée d2 sur le corps local ou global F. Soit G une forme intérieure du groupe algébrique GL2, i.e. le groupe multiplicatif d'une algèbre de quaternions. La correspondance de Jacquet-Langlands est une bijection entre * les formes automorphes de G de dimension supérieure à 1 * les représentations automorphes cuspidales de GL2 qui sont de carré intégrable (modulo le centre) en chaque place de ramification de G De plus, les représentations correspondantes ont mêmes caractères, et mêmes composantes locales à chaque place de ramification. Rogawski en 1983 et Deligne-Kazhdan-Vignéras en 1984 ont étendu la correspondance de Jacquet-Langlands au cas des algèbres à division de dimensions supérieures. (fr)
author1-link
  • Hervé Jacquet (en)
author2-link
  • Robert Langlands (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software