About: Kōmura's theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/4mmWecB29G

In mathematics, Kōmura's theorem is a result on the differentiability of absolutely continuous Banach space-valued functions, and is a substantial generalization of Lebesgue's theorem on the differentiability of the indefinite integral, which is that Φ : [0, T] → R given by is differentiable at t for almost every 0 < t < T when φ : [0, T] → R lies in the Lp space L1([0, T]; R).

AttributesValues
rdf:type
rdfs:label
  • Kōmura's theorem (en)
  • Kōmuras sats (sv)
rdfs:comment
  • In mathematics, Kōmura's theorem is a result on the differentiability of absolutely continuous Banach space-valued functions, and is a substantial generalization of Lebesgue's theorem on the differentiability of the indefinite integral, which is that Φ : [0, T] → R given by is differentiable at t for almost every 0 < t < T when φ : [0, T] → R lies in the Lp space L1([0, T]; R). (en)
  • Inom matematiken är Kōmuras sats ett resultat om differentierbarheten av funktioner över Banachrum. Satsen är en betydlig generalisering av Lebesgues sats som säger att Φ : [0, T] → R definierad som är differentierbar vid t för nästan alla 0 < t < T då φ : [0, T] → R är i Lp-rummet L1([0, T]; R). (sv)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, Kōmura's theorem is a result on the differentiability of absolutely continuous Banach space-valued functions, and is a substantial generalization of Lebesgue's theorem on the differentiability of the indefinite integral, which is that Φ : [0, T] → R given by is differentiable at t for almost every 0 < t < T when φ : [0, T] → R lies in the Lp space L1([0, T]; R). (en)
  • Inom matematiken är Kōmuras sats ett resultat om differentierbarheten av funktioner över Banachrum. Satsen är en betydlig generalisering av Lebesgues sats som säger att Φ : [0, T] → R definierad som är differentierbar vid t för nästan alla 0 < t < T då φ : [0, T] → R är i Lp-rummet L1([0, T]; R). (sv)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software