In mathematics, Kōmura's theorem is a result on the differentiability of absolutely continuous Banach space-valued functions, and is a substantial generalization of Lebesgue's theorem on the differentiability of the indefinite integral, which is that Φ : [0, T] → R given by is differentiable at t for almost every 0 < t < T when φ : [0, T] → R lies in the Lp space L1([0, T]; R).
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Kōmura's theorem (en)
- Kōmuras sats (sv)
|
rdfs:comment
| - In mathematics, Kōmura's theorem is a result on the differentiability of absolutely continuous Banach space-valued functions, and is a substantial generalization of Lebesgue's theorem on the differentiability of the indefinite integral, which is that Φ : [0, T] → R given by is differentiable at t for almost every 0 < t < T when φ : [0, T] → R lies in the Lp space L1([0, T]; R). (en)
- Inom matematiken är Kōmuras sats ett resultat om differentierbarheten av funktioner över Banachrum. Satsen är en betydlig generalisering av Lebesgues sats som säger att Φ : [0, T] → R definierad som är differentierbar vid t för nästan alla 0 < t < T då φ : [0, T] → R är i Lp-rummet L1([0, T]; R). (sv)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In mathematics, Kōmura's theorem is a result on the differentiability of absolutely continuous Banach space-valued functions, and is a substantial generalization of Lebesgue's theorem on the differentiability of the indefinite integral, which is that Φ : [0, T] → R given by is differentiable at t for almost every 0 < t < T when φ : [0, T] → R lies in the Lp space L1([0, T]; R). (en)
- Inom matematiken är Kōmuras sats ett resultat om differentierbarheten av funktioner över Banachrum. Satsen är en betydlig generalisering av Lebesgues sats som säger att Φ : [0, T] → R definierad som är differentierbar vid t för nästan alla 0 < t < T då φ : [0, T] → R är i Lp-rummet L1([0, T]; R). (sv)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |