rdfs:comment
| - V diferenciálním počtu se derivace funkcí nebo závislých proměnných zapisují různými způsoby, které během času navrhli různí matematici. Protože různé zápisy mají v různých kontextech své výhody, zachovaly se až do současnosti. (cs)
- No hi ha una única notació de la derivada. Sinó que diferents matemàtics han proposat diferents notacions per a la derivada d'una funció o variable. La utilitat de cada notació varia amb el context, i de vegades té avantatge de fer servir més d'una notació en un mateix context donat. Les notacions més comunes per a la derivada són les que es relacionen tot seguit. (ca)
- In differential calculus, there is no single uniform notation for differentiation. Instead, various notations for the derivative of a function or variable have been proposed by various mathematicians. The usefulness of each notation varies with the context, and it is sometimes advantageous to use more than one notation in a given context. The most common notations for differentiation (and its opposite operation, the antidifferentiation or indefinite integration) are listed below. (en)
- Notasi untuk diferensiasi tidak seragam dalam kalkulus diferensial, karena ada beberapa notasi untuk derivatif suatu fungsi atu variabel dependen yang telah diusulkan oleh para matematikawan. Kegunaan setiap notasi berbeda menurut konteksnya dan kadang kala bermanfaat untuk menggunakan lebih dari satu notasi pada konteks tertentu. Notasi paling umum untuk diferensiasi adalah seperti di bawah ini. (in)
- 微分の記法 (びぶんのきほう、英語: notation for differentiation) とは、数学における微分を記号的に表記するための方法である。現在、数学関数や従属変数の微分を表す微分の記法として画一化・統一されたものはなく、複数の数学者によって異なる記法が提案されている。それぞれの記法の有用性はその使用される分野・文脈・状況によって変化し、与えられた文脈によって複数の記法を使い分けることもしばしば有効である。本項では比較的使用頻度が高い微分の記法を示す。 (ja)
- Nel calcolo differenziale non esiste una notazione per la differenziazione univoca. Diversi matematici, infatti, hanno proposto nel tempo alcune particolari simbologie per denotare la derivata di una funzione. (it)
- Нотация анализа — система математических обозначений, применяемая в математическом анализе, при этом различные математические школы применяют различные обозначения для производной функций или переменных. Использование той или иной нотации зависит от контекста, и одно обозначение может оказаться удобнее других в конкретном случае. Наиболее общеупотребительна нотация Лейбница, также широко используются нотации Лагранжа, Эйлера, Ньютона. (ru)
|