About: Nyquist–Shannon sampling theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatPhysicsTheorems, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/nehHwExAc

The Nyquist–Shannon sampling theorem is a theorem in the field of signal processing which serves as a fundamental bridge between continuous-time signals and discrete-time signals. It establishes a sufficient condition for a sample rate that permits a discrete sequence of samples to capture all the information from a continuous-time signal of finite bandwidth.

AttributesValues
rdf:type
rdfs:label
  • Nyquist–Shannon sampling theorem (en)
  • مبرهنة نايكويست وشانون (ar)
  • Teorema de mostratge de Nyquist-Shannon (ca)
  • Nyquistův–Shannonův vzorkovací teorém (cs)
  • Nyquist-Shannon-Abtasttheorem (de)
  • Teoremo pri specimenado (eo)
  • Teorema de muestreo de Nyquist-Shannon (es)
  • Nyquist–Shannonen laginketa teorema (eu)
  • Théorème d'échantillonnage (fr)
  • Teorema del campionamento di Nyquist-Shannon (it)
  • 標本化定理 (ja)
  • 표본화 정리 (ko)
  • Bemonsteringstheorema van Nyquist-Shannon (nl)
  • Twierdzenie o próbkowaniu (pl)
  • Теорема Котельникова (ru)
  • Teorema da amostragem de Nyquist–Shannon (pt)
  • Nyquist-Shannons samplingsteorem (sv)
  • Теорема відліків Віттекера — Найквіста — Котельникова — Шеннона (uk)
  • 采样定理 (zh)
rdfs:comment
  • Nyquistův–Shannonův vzorkovací teorém (také Shannonův teorém, Nyquistův teorém, Kotělnikovův teorém, Nyquistův–Shannonův teorém, Shannonův–Nyquistův–Kotělnikovův teorém, apod.) je fyzikální tvrzení o tom, že „přesná rekonstrukce spojitého, frekvenčně omezeného signálu z jeho vzorků je možná tehdy, pokud byla vzorkovací frekvence vyšší než dvojnásobek nejvyšší harmonické složky vzorkovaného signálu.“ (cs)
  • مبرهنة شانون ونايكويست أو مبرهنة شانون ونايكويست في الاستعيان (بالإنجليزية: Nyquist–Shannon sampling theorem)‏ هي من أهم المبرهنات في التقنيات الرقمية الحديثة والعلوم المتصلة بها مثل المعالجة الرقمية للإشارة والمعلوماتية ونظرية المعلومات. تعود المبرهنة إلى جهد العالمين كلود شانون وهاري نايكست. وممن اشتهر في هذه المبرهنة العالم العراقي الأمريكي عبدالجبار جري. (ar)
  • Laŭ la teoremo pri specimenado (teoremo de Nyquist–Shannon–Kotelnikov, teoremo de Whittaker–Shannon–Kotelnikov, teoremo de Whittaker–Nyquist–Kotelnikov–Shannon, aŭ pli simple teoremo de Nyquist): preciza rekreo de eblas, se signalo havas maksimuman frekvencon kaj la (frekvenco de Nyquist, ) estas pli ol dufoje la maksimuma frekvenco. (eo)
  • , Nyquist-Shannonen laginketa teorema eta arteko lokarria da. Teoremak laginketa burutzean sortutako laginek denbora jarraituko seinalearen informazio guztia gorde dezaten bete beharreko baldintza ezartzen du. Teorema maiztasun banda mugatua duten seinale jarraituentzat baliagarria da soilik. (eu)
  • Le théorème d'échantillonnage, dit aussi théorème de Shannon ou théorème de Nyquist-Shannon, établit les conditions qui permettent l'échantillonnage d'un signal de largeur spectrale et d'amplitude limitées. La connaissance de plus de caractéristiques du signal permet sa description par un nombre inférieur d'échantillons, par un processus d'acquisition comprimée. (fr)
  • 標本化定理(ひょうほんかていり、英: sampling theorem)またはサンプリング定理は、連続的な信号(アナログ信号)を離散的な信号(デジタル信号)へと変換する際に元の信号に忠実であるにはどの程度の間隔で標本化(サンプリング)すればよいかを示す、情報理論の定理である。 (ja)
  • 표본화 정리(標本化定理, 영어: sampling theorem) 또는 나이퀴스트-섀넌 표본화 정리(영어: Nyquist-Shannon sampling theorem)는 원거리 통신과 신호 처리를 다루는 정보이론의 기본이 되는 원리이다. (ko)
  • Теоре́ма Коте́льникова (в англоязычной литературе — теорема Найквиста — Шеннона, теорема отсчётов) — фундаментальное утверждение в области цифровой обработки сигналов, связывающее непрерывные и дискретные сигналы и гласящее, что «любую функцию , состоящую из частот от 0 до , можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом менее чем через секунд». При доказательстве теоремы взяты ограничения на спектр частот , где . (ru)
  • 采样定理是数字信号处理领域的重要定理。定理內容是连续信号(通常称作“模拟信号”)与离散信号(通常称作“数字信号”)之间的一个基本桥梁。它确定了信号带宽的上限,或能捕获连续信号的所有信息的离散采样信号所允许的采样频率的下限。 严格地说,定理仅适用于具有傅里叶变换的一类数学函数,即频率在有限区域以外为零(参照图1)。离散时间傅里叶变换(泊松求和公式的一种形式)提供了实际信号的解析延拓,但只能近似该条件。直观上我们希望,当把连续函数化为采样值(叫做“样本”)的离散序列并插值到连续函数中,结果的保真度取决于原始采样的密度(或采样率)。采样定理介绍了对带宽限制的函数类型来说保真度足够完整的采样率的概念;在采样过程中"信息"实际没有损失。定理用函数的带宽来表示采样率。定理也导出了一个数学上理想的原连续信号的重构公式。 该定理没有排除一些并不满足采样率准则的特殊情况下完整重构的可能性。(参见下文,以及壓縮感知。) 奈奎斯特–香农采样定理的名字是为了紀念哈里·奈奎斯特和克劳德·香农。该定理及其在插值理论中的原型曾被奥古斯丁-路易·柯西、埃米尔·博雷尔、雅克·阿达马、、、弗拉基米尔·亚历山德罗维奇·科捷利尼科夫等人发现或研究。所以它还叫做奈奎斯特–香农–科捷利尼科夫定理、惠特克–香农–科捷利尼科夫定理、惠特克–奈奎斯特–科捷利尼科夫–香农定理及插值基本定理。 (zh)
  • El teorema de mostratge de Nyquist-Shannon, també conegut com a teorema de mostratge de Whittaker-Nyquist-Kotelnikov-Shannon, criteri de Nyquist o teorema de Nyquist, és un teorema fonamental de la teoria de la informació, d'especial interès en les telecomunicacions. Aquest teorema va ser formulat en forma de conjectura per primer cop per Harry Nyquist l'any 1928 (Certain topics in telegraph transmission theory), i va ser demostrat formalment per Claude E. Shannon l'any 1949 (Communication in the presence of noise). La intenció del suec Harry Nyquist en formular aquest teorema era la d'obtenir una enregistrament digital de qualitat i també es pot conèixer amb el nom de condició de Nyquist. Si es fa un mostreig a un baix valor, hi ha una possibilitat que el senyal original no estigui únicam (ca)
  • Das Nyquist-Shannon-Abtasttheorem, auch nyquist-shannonsches Abtasttheorem und in neuerer Literatur auch WKS-Abtasttheorem (für Whittaker, Kotelnikow und Shannon) genannt, ist ein grundlegendes Theorem der Nachrichtentechnik, Signalverarbeitung und Informationstheorie. Wladimir Kotelnikow formulierte das Abtasttheorem 1933. Die Veröffentlichung in einem sowjetischen Konferenzbericht wurde im Osten seit den 1950er Jahren referenziert, blieb aber allgemein im Westen bis in die 1980er weitgehend unbekannt. Unabhängig von Kotelnikow formulierte es Claude Elwood Shannon 1948 als Ausgangspunkt seiner Theorie der maximalen Kanalkapazität, d. h. der maximalen Bitrate in einem frequenzbeschränkten, rauschbelasteten Übertragungskanal. (de)
  • El teorema de muestreo de Nyquist-Shannon, también conocido como teorema de muestreo de Whittaker-Nyquist-Kotelnikov-Shannon o bien teorema de Nyquist, es un teorema fundamental de la teoría de la información, de especial interés en las telecomunicaciones. Este teorema fue formulado en forma de conjetura por primera vez por Harry Nyquist en 1928 (Certain topics in telegraph transmission theory), y fue demostrado formalmente por Claude E. Shannon en 1949 (Communication in the presence of noise). (es)
  • The Nyquist–Shannon sampling theorem is a theorem in the field of signal processing which serves as a fundamental bridge between continuous-time signals and discrete-time signals. It establishes a sufficient condition for a sample rate that permits a discrete sequence of samples to capture all the information from a continuous-time signal of finite bandwidth. (en)
  • In elettronica e telecomunicazioni, il teorema del campionamento di Nyquist-Shannon o semplicemente teorema del campionamento, il cui nome si deve a Harry Nyquist e Claude Shannon, è un risultato di notevole rilevanza nell'ambito della teoria dei segnali. Il teorema, comparso per la prima volta nel 1949 in un articolo di C. E. Shannon, dovrebbe chiamarsi Whittaker-Nyquist-Kotelnikov-Shannon (WNKS), secondo l'ordine cronologico di chi ne dimostrò versioni via via più generalizzate. (it)
  • O teorema da amostragem de Nyquist–Shannon, também conhecido simplesmente como teorema de Nyquist, é fundamental no campo da teoria da informação, particularmente na área de telecomunicações e processamento de sinais. Amostrar é o processo no qual se converte um sinal (por exemplo, uma função contínua no tempo ou espaço) em uma sequência numérica (uma função discreta no tempo ou espaço). A versão de Shannon do teorema é: em que é a maior frequência em Hertz do sinal em questão. (pt)
  • Twierdzenie o próbkowaniu, twierdzenie Nyquista–Shannona – fundamentalne twierdzenie teorii informacji, telekomunikacji oraz cyfrowego przetwarzania sygnałów opisujące matematyczne podstawy procesów próbkowania sygnałów oraz ich rekonstrukcji: Z sygnału dyskretnego złożonego z próbek danego sygnału ciągłego można wiernie odtworzyć sygnał (pl)
  • Het bemonsteringstheorema van Nyquist-Shannon is de stelling in de informatietheorie dat wanneer een analoog signaal naar een tijddiscreet signaal wordt geconverteerd, de bemonsteringsfrequentie minstens tweemaal zo hoog moet zijn als de hoogste in het signaal aanwezige frequentie om het origineel zonder fouten te kunnen reproduceren. De helft van de bemonsteringsfrequentie is de nyquistfrequentie. Anders gezegd, voor een foutloze reproductie na bemonstering mag het analoge signaal geen frequenties bevatten hoger dan de nyquistfrequentie. De tijd tussen de bemonsteringen is de nyquistinterval. Het is genoemd naar Harry Nyquist die dit theorema in 1928 bewees. (nl)
  • Nyquist-Shannons samplingsteorem, även kallad Nyquistteoremet, Shannonteoremet eller samplingsteoremet, talar om med vilken frekvens man måste mäta en vågrörelse med hjälp av sampling för att kunna återskapa signalen. Teoremet går i grova drag ut på att man måste, för att undvika fel, sampla med en frekvens som är minst dubbla signalens bandbredd annars blir resultatet av mätningen lägre än signalens verkliga frekvens. (sv)
  • Теоре́ма ві́дліків Вітте́кера — На́йквіста — Коте́льникова — Ше́ннона (теорема відліків) свідчить, що якщо неперервний сигнал x(t) має спектр, обмежений частотою Fmax, то його можна однозначно і без втрат відновити за дискретними відліками, узятими з частотою fдискр=2*Fmax, або, по-іншому, за відліками, взятими з періодом Tдискр=. Теорему відліків можна сформулювати обернено: Для того, щоб відновити сигнал за його відліками без втрат, необхідно, щоб частота дискретизації була хоча б удвічі більшою за максимальну частоту первинного неперервного сигналу. Fд ≥ 2Fmax. (uk)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/AliasedSpectrum.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Bandlimited.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/CPT-sound-nyquist-thereom-1.5percycle.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/CriticalFrequencyAliasing.svg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Moire_pattern_of_bricks.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Moire_pattern_of_bricks_small.jpg
  • http://commons.wikimedia.org/wiki/Special:FilePath/Nyquist_sampling.gif
  • http://commons.wikimedia.org/wiki/Special:FilePath/ReconstructFilter.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Sinc_function_(normalized).svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 50 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software