About: Orbit (dynamics)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:WikicatDynamicalSystems, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/3SjuggmTjc

In mathematics, specifically in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. It can be understood as the subset of phase space covered by the trajectory of the dynamical system under a particular set of initial conditions, as the system evolves. As phase space trajectory is uniquely determined for any given set of phase space coordinates, it is not possible for different orbits to intersect in phase space, therefore the set of all orbits of a dynamical system is a partition of the phase space. Understanding the properties of orbits by using topological methods is one of the objectives of the modern theory of dynamical systems.

AttributesValues
rdf:type
rdfs:label
  • Orbita (matematica) (it)
  • 軌道 (力学系) (ja)
  • Orbit (dynamics) (en)
rdfs:comment
  • 力学系における軌道(きどう)とは、ある初期条件を通り、系の時間発展のルールに従って定まる状態の集合である。幾何学的には軌道は、離散力学系では相空間上の点列、連続力学系では相空間上の曲線となる。より一般的には、群作用から定まる軌道と同義である。軌道の性質を調べることが、力学系という分野の主な関心の一つである。 (ja)
  • In mathematics, specifically in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. It can be understood as the subset of phase space covered by the trajectory of the dynamical system under a particular set of initial conditions, as the system evolves. As phase space trajectory is uniquely determined for any given set of phase space coordinates, it is not possible for different orbits to intersect in phase space, therefore the set of all orbits of a dynamical system is a partition of the phase space. Understanding the properties of orbits by using topological methods is one of the objectives of the modern theory of dynamical systems. (en)
  • In matematica, in particolare in geometria differenziale, un'orbita di un sistema dinamico è una traiettoria percorsa dal sistema nello spazio delle fasi, ovvero una funzione che soddisfa l'equazione che definisce il sistema dinamico stesso. Se il sistema dinamico è continuo, cioè è determinato da un'equazione differenziale ordinaria autonoma: (it)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Critical_orbit_3d.png
  • http://commons.wikimedia.org/wiki/Special:FilePath/z%5E3+(1.0149042485835864102+0.10183008497976470119i)*z;_(zoom).png
  • http://commons.wikimedia.org/wiki/Special:FilePath/Simple_Harmonic_Motion_Orbit.gif
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • In mathematics, specifically in the study of dynamical systems, an orbit is a collection of points related by the evolution function of the dynamical system. It can be understood as the subset of phase space covered by the trajectory of the dynamical system under a particular set of initial conditions, as the system evolves. As phase space trajectory is uniquely determined for any given set of phase space coordinates, it is not possible for different orbits to intersect in phase space, therefore the set of all orbits of a dynamical system is a partition of the phase space. Understanding the properties of orbits by using topological methods is one of the objectives of the modern theory of dynamical systems. For discrete-time dynamical systems, the orbits are sequences; for real dynamical systems, the orbits are curves; and for holomorphic dynamical systems, the orbits are Riemann surfaces. (en)
  • 力学系における軌道(きどう)とは、ある初期条件を通り、系の時間発展のルールに従って定まる状態の集合である。幾何学的には軌道は、離散力学系では相空間上の点列、連続力学系では相空間上の曲線となる。より一般的には、群作用から定まる軌道と同義である。軌道の性質を調べることが、力学系という分野の主な関心の一つである。 (ja)
  • In matematica, in particolare in geometria differenziale, un'orbita di un sistema dinamico è una traiettoria percorsa dal sistema nello spazio delle fasi, ovvero una funzione che soddisfa l'equazione che definisce il sistema dinamico stesso. Se il sistema dinamico è continuo, cioè è determinato da un'equazione differenziale ordinaria autonoma: con un campo vettoriale differenziabile definito nello spazio delle fasi , un'orbita è una soluzione dell'equazione. Dal momento che il flusso del sistema nel punto è la soluzione quando è preso come il punto di inizio dell'evoluzione del sistema, ovvero , si ha che l'orbita passante per è talvolta scritta come l'insieme: (it)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is rdfs:seeAlso of
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 76 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2025 OpenLink Software