About: PBR theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FPBR_theorem

The PBR theorem is a no-go theorem in quantum foundations due to Matthew Pusey, Jonathan Barrett, and Terry Rudolph (for whom the theorem is named) in 2012. It has particular significance for how one may interpret the nature of the quantum state. This result was cited by theoretical physicist Antony Valentini as "the most important general theorem relating to the foundations of quantum mechanics since Bell's theorem".

AttributesValues
rdf:type
rdfs:label
  • PBR theorem (en)
rdfs:comment
  • The PBR theorem is a no-go theorem in quantum foundations due to Matthew Pusey, Jonathan Barrett, and Terry Rudolph (for whom the theorem is named) in 2012. It has particular significance for how one may interpret the nature of the quantum state. This result was cited by theoretical physicist Antony Valentini as "the most important general theorem relating to the foundations of quantum mechanics since Bell's theorem". (en)
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
author
  • Matthew F. Pusey, Jonathan Barrett, and Terry Rudolph (en)
source
  • "On the reality of the quantum state", Nature Physics 8, 475-478 (en)
text
  • In conclusion, we have presented a no-go theorem, which - modulo assumptions - shows that models in which the quantum state is interpreted as mere information about an objective physical state of a system cannot reproduce the predictions of quantum theory. The result is in the same spirit as Bell’s theorem, which states that no local theory can reproduce the predictions of quantum theory. (en)
has abstract
  • The PBR theorem is a no-go theorem in quantum foundations due to Matthew Pusey, Jonathan Barrett, and Terry Rudolph (for whom the theorem is named) in 2012. It has particular significance for how one may interpret the nature of the quantum state. With respect to certain realist hidden variable theories that attempt to explain the predictions of quantum mechanics, the theorem rules that pure quantum states must be "ontic" in the sense that they correspond directly to states of reality, rather than "epistemic" in the sense that they represent probabilistic or incomplete states of knowledge about reality. The PBR theorem may also be compared with other no-go theorems like Bell's theorem and the Bell–Kochen–Specker theorem, which, respectively, rule out the possibility of explaining the predictions of quantum mechanics with local hidden variable theories and noncontextual hidden variable theories. Similarly, the PBR theorem could be said to rule out preparation independent hidden variable theories, in which quantum states that are prepared independently have independent hidden variable descriptions. This result was cited by theoretical physicist Antony Valentini as "the most important general theorem relating to the foundations of quantum mechanics since Bell's theorem". (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 67 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software