A regular grid is a tessellation of n-dimensional Euclidean space by congruent parallelotopes (e.g. bricks). Its opposite is irregular grid. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces. Since the derivatives of field variables can be conveniently expressed as finite differences, structured grids mainly appear in finite difference methods. Unstructured grids offer more flexibility than structured grids and hence are very useful in finite element and finite volume methods.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Gitter (Geometrie) (de)
- Maillage (fr)
- マップドメッシュ (ja)
- Regular grid (en)
- Grade cartesiana (pt)
|
rdfs:comment
| - Ein Gitter in der Geometrie ist eine lückenlose und überlappungsfreie Partition eines Raumes durch eine Menge von Gitterzellen. Die Gitterzellen werden definiert durch eine Menge von Gitterpunkten, die untereinander durch eine Menge von Gitterlinien verbunden sind. Gitter werden in der Naturwissenschaft und Technik zur Vermessung, Modellierung und für numerische Berechnungen verwendet (siehe Gittermodell). (de)
- Un maillage est la discrétisation spatiale d'un milieu continu, ou aussi, une modélisation géométrique d’un domaine par des éléments proportionnés finis et bien définis. L'objet d'un maillage est de procéder à une simplification d'un système par un modèle représentant ce système et, éventuellement, son environnement (le milieu), dans l'optique de simulations de calculs ou de représentations graphiques. On parle également dans le langage commun de pavage. (fr)
- マップドメッシュ(mapped mesh)は、主に数値解析で使用されるメッシュ生成法の一つで、構造格子を生成する方法である。作成方法の一つとして、有限要素法の形状関数を使用して作成することができる。 (ja)
- A regular grid is a tessellation of n-dimensional Euclidean space by congruent parallelotopes (e.g. bricks). Its opposite is irregular grid. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces. Since the derivatives of field variables can be conveniently expressed as finite differences, structured grids mainly appear in finite difference methods. Unstructured grids offer more flexibility than structured grids and hence are very useful in finite element and finite volume methods. (en)
- Uma grade regular é uma tesselação de um Espaço euclidiano de n dimensões criado por paralelepípedos. Grades desse tipo aparecem em papéis milimetrados e podem ser usados em Método dos elementos finitos, assim como em Método dos volumes finitos e em Método das diferenças finitas. Como as derivadas de campo são expressas convenientemente como diferenças finitas, grades estruturadas aparecem muito em metodos de diferença finita. Grades desestruturadas oferecem mais flexibilidade que grades estruturadas e, por isso, são mais úteis em metodos de volume e elementos finitos. (pt)
|
foaf:depiction
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
has abstract
| - Ein Gitter in der Geometrie ist eine lückenlose und überlappungsfreie Partition eines Raumes durch eine Menge von Gitterzellen. Die Gitterzellen werden definiert durch eine Menge von Gitterpunkten, die untereinander durch eine Menge von Gitterlinien verbunden sind. Gitter werden in der Naturwissenschaft und Technik zur Vermessung, Modellierung und für numerische Berechnungen verwendet (siehe Gittermodell). (de)
- Un maillage est la discrétisation spatiale d'un milieu continu, ou aussi, une modélisation géométrique d’un domaine par des éléments proportionnés finis et bien définis. L'objet d'un maillage est de procéder à une simplification d'un système par un modèle représentant ce système et, éventuellement, son environnement (le milieu), dans l'optique de simulations de calculs ou de représentations graphiques. On parle également dans le langage commun de pavage. (fr)
- A regular grid is a tessellation of n-dimensional Euclidean space by congruent parallelotopes (e.g. bricks). Its opposite is irregular grid. Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces. Since the derivatives of field variables can be conveniently expressed as finite differences, structured grids mainly appear in finite difference methods. Unstructured grids offer more flexibility than structured grids and hence are very useful in finite element and finite volume methods. Each cell in the grid can be addressed by index (i, j) in two dimensions or (i, j, k) in three dimensions, and each vertex has coordinates in 2D or in 3D for some real numbers dx, dy, and dz representing the grid spacing. (en)
- マップドメッシュ(mapped mesh)は、主に数値解析で使用されるメッシュ生成法の一つで、構造格子を生成する方法である。作成方法の一つとして、有限要素法の形状関数を使用して作成することができる。 (ja)
- Uma grade regular é uma tesselação de um Espaço euclidiano de n dimensões criado por paralelepípedos. Grades desse tipo aparecem em papéis milimetrados e podem ser usados em Método dos elementos finitos, assim como em Método dos volumes finitos e em Método das diferenças finitas. Como as derivadas de campo são expressas convenientemente como diferenças finitas, grades estruturadas aparecem muito em metodos de diferença finita. Grades desestruturadas oferecem mais flexibilidade que grades estruturadas e, por isso, são mais úteis em metodos de volume e elementos finitos. Cada célula na grade pode ser endereçada pelo índice em duas (i,j) ou três (i,j,k) dimensões, e cada vértice tem coordenadas em 2D ou em 3D para algum número real dx, dy e dz representando o espaço da grade. (pt)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |