rdfs:comment
| - Der Darstellungssatz von Riesz-Markow, teilweise auch Darstellungssatz von Riesz oder Darstellungssatz von Riesz-Markov-Kakutani genannt, ist ein mathematischer Satz aus dem Grenzgebiet der Maßtheorie und der Funktionalanalysis. Er trifft eine Aussage darüber, welche positiven Linearformen auf Funktionenräumen durch Maße dargestellt werden können und liefert damit auch Beschreibungen der entsprechenden topologischen Dualräume. Er ist nach Frigyes Riesz, Andrei Andrejewitsch Markow und Shizuo Kakutani benannt. (de)
- У математиці теорема про інтегральне представлення Ріса (також теорема Ріса — Маркова — Какутані) пов'язує лінійний функціонал на просторах неперервних функцій на локально компактному гаусдорфовому просторі з мірами в теорії міри. Теорема названа на честь угорського математика Фридьєша Ріса, який довів версію теореми для неперервних функцій на одиничному інтервалі. Надалі було доведено багато пов’язаних варіантів теореми, у яких лінійні функціонали можуть бути комплексними, дійсними або додатними, простір, у якому вони визначені, може бути одиничним інтервалом, компактним простором або локально компактним простором, неперервні функції можуть бути із простору функцій, що рівні нулю на нескінченності або простору функцій із компактним носієм. (uk)
- En analyse, le théorème de représentation de Riesz (certaines versions sont parfois dénommées théorème de Riesz-Markov) est un théorème qui « représente » certains éléments du dual de l'espace des fonctions continues à support compact définies sur un espace topologique localement compact à l'aide de mesures. (fr)
- In mathematics, the Riesz–Markov–Kakutani representation theorem relates linear functionals on spaces of continuous functions on a locally compact space to measures in measure theory. The theorem is named for Frigyes Riesz who introduced it for continuous functions on the unit interval, Andrey Markov who extended the result to some non-compact spaces, and Shizuo Kakutani who extended the result to compact Hausdorff spaces. (en)
- Na teoria da medida e na análise funcional, o teorema da representação de Riesz–Markov–Kakutani, também conhecido por teorema da representação de Riesz ou de Riesz–Markov, enuncia condições sob as quais um funcional linear num subespaço de C(X), que é o espaço das funções complexas contínuas em X, é da forma f ↦ ∫X f dμ, isto é, é dado por integração em relação a uma medida positiva ou complexa μ. (pt)
|