About: Scanning tunneling spectroscopy     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/describe/?url=http%3A%2F%2Fdbpedia.org%2Fresource%2FScanning_tunneling_spectroscopy

Scanning tunneling spectroscopy (STS), an extension of scanning tunneling microscopy (STM), is used to provide information about the density of electrons in a sample as a function of their energy. In scanning tunneling microscopy, a metal tip is moved over a conducting sample without making physical contact. A bias voltage applied between the sample and tip allows a current to flow between the two. This is as a result of quantum tunneling across a barrier; in this instance, the physical distance between the tip and the sample

AttributesValues
rdfs:label
  • Rastertunnelspektroskopie (de)
  • 走査型トンネル分光法 (ja)
  • Scanning tunneling spectroscopy (en)
  • Сканирующая туннельная спектроскопия (ru)
rdfs:comment
  • Die Rastertunnelspektroskopie (englisch scanning tunneling spectroscopy, STS) ist eine Methode des Rastertunnelmikroskops. Mit ihr lassen sich die lokalen (oberflächennahen) Zustandsdichten (LDOS) von Elektronen (bzw. Löcher, also fehlenden Elektronen) messen. (de)
  • 走査型トンネル分光法(そうさがたトンネルぶんこうほう、Scanning tunneling spectroscopy)とは、走査型トンネル顕微鏡の探針を使用して試料の表面の状態を分析する手法。原子スケールの分解能で試料の局所的な電子状態密度に対応したトンネルスペクトルが得られる。 (ja)
  • Сканирующая туннельная спектроскопия (сокр., СТС, англ. scanning tunneling spectroscopy, сокр., STS) — совокупность методов сканирующей туннельной микроскопии, позволяющих получать информацию о локальной электронной структуре исследуемой поверхности путём варьирования напряжения между иглой и образцом. (ru)
  • Scanning tunneling spectroscopy (STS), an extension of scanning tunneling microscopy (STM), is used to provide information about the density of electrons in a sample as a function of their energy. In scanning tunneling microscopy, a metal tip is moved over a conducting sample without making physical contact. A bias voltage applied between the sample and tip allows a current to flow between the two. This is as a result of quantum tunneling across a barrier; in this instance, the physical distance between the tip and the sample (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Tunel_spectroscopy.png
dcterms:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • Die Rastertunnelspektroskopie (englisch scanning tunneling spectroscopy, STS) ist eine Methode des Rastertunnelmikroskops. Mit ihr lassen sich die lokalen (oberflächennahen) Zustandsdichten (LDOS) von Elektronen (bzw. Löcher, also fehlenden Elektronen) messen. (de)
  • Scanning tunneling spectroscopy (STS), an extension of scanning tunneling microscopy (STM), is used to provide information about the density of electrons in a sample as a function of their energy. In scanning tunneling microscopy, a metal tip is moved over a conducting sample without making physical contact. A bias voltage applied between the sample and tip allows a current to flow between the two. This is as a result of quantum tunneling across a barrier; in this instance, the physical distance between the tip and the sample The scanning tunneling microscope is used to obtain "topographs" - topographic maps - of surfaces. The tip is rastered across a surface and (in constant current mode), a constant current is maintained between the tip and the sample by adjusting the height of the tip. A plot of the tip height at all measurement positions provides the topograph. These topographic images can obtain atomically resolved information on metallic and semi-conducting surfaces However, the scanning tunneling microscope does not measure the physical height of surface features. One such example of this limitation is an atom adsorbed onto a surface. The image will result in some perturbation of the height at this point. A detailed analysis of the way in which an image is formed shows that the transmission of the electric current between the tip and the sample depends on two factors: (1) the geometry of the sample and (2) the arrangement of the electrons in the sample. The arrangement of the electrons in the sample is described quantum mechanically by an "electron density". The electron density is a function of both position and energy, and is formally described as the local density of electron states, abbreviated as local density of states (LDOS), which is a function of energy. Spectroscopy, in its most general sense, refers to a measurement of the number of something as a function of energy. For scanning tunneling spectroscopy the scanning tunneling microscope is used to measure the number of electrons (the LDOS) as a function of the electron energy. The electron energy is set by the electrical potential difference (voltage) between the sample and the tip. The location is set by the position of the tip. At its simplest, a "scanning tunneling spectrum" is obtained by placing a scanning tunneling microscope tip above a particular place on the sample. With the height of the tip fixed, the electron tunneling current is then measured as a function of electron energy by varying the voltage between the tip and the sample (the tip to sample voltage sets the electron energy). The change of the current with the energy of the electrons is the simplest spectrum that can be obtained, it is often referred to as an I-V curve. As is shown below, it is the slope of the I-V curve at each voltage (often called the dI/dV-curve) which is more fundamental because dI/dV corresponds to the electron density of states at the local position of the tip, the LDOS. (en)
  • 走査型トンネル分光法(そうさがたトンネルぶんこうほう、Scanning tunneling spectroscopy)とは、走査型トンネル顕微鏡の探針を使用して試料の表面の状態を分析する手法。原子スケールの分解能で試料の局所的な電子状態密度に対応したトンネルスペクトルが得られる。 (ja)
  • Сканирующая туннельная спектроскопия (сокр., СТС, англ. scanning tunneling spectroscopy, сокр., STS) — совокупность методов сканирующей туннельной микроскопии, позволяющих получать информацию о локальной электронной структуре исследуемой поверхности путём варьирования напряжения между иглой и образцом. (ru)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git139 as of Feb 29 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3330 as of Mar 19 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 60 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software