About: Tannakian formalism     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2Tpx6DrsJH

In mathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K. The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory.

AttributesValues
rdfs:label
  • 淡中圏 (ja)
  • Tannakian formalism (en)
rdfs:comment
  • 淡中圏(たんなかけん、tannakian category)とは与えられた体Kに関係するある付加的な構造を備えた、ある種のモノイダル圏Cである。そのような圏Cの役割は、K上定義された代数群Gの線形表現の圏をおおよそ見積もることにある。この理論の多数の応用が今までになされてきた。 名前の由来はコンパクト群Gとそれらの表現に関するである。この理論ははじめアレクサンドル・グロタンディークのセミナーで発展し、その後にドリーニュによって再考され、幾分簡易化された。理論は、副有限群あるいはコンパクト群Gの有限組み合わせ的な表現に関する理論であるグロタンディークのガロア理論に似ている。 より詳しくはSaavedra Rivanoの論評にあるが、理論の要点はガロア理論のをCからへのTに置き換えることにある。からそれ自身への自然変換がなす群、すなわちガロア理論における副有限群はTからそれ自身へのテンソル構造を保つ自然変換のなす群(単にモノイドとする場合もある)に置き換える。これは代数群ではないが、代数群の逆極限(すなわち副代数群)である。 (ja)
  • In mathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K. The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
dbp:wikiPageUsesTemplate
has abstract
  • In mathematics, a Tannakian category is a particular kind of monoidal category C, equipped with some extra structure relative to a given field K. The role of such categories C is to approximate, in some sense, the category of linear representations of an algebraic group G defined over K. A number of major applications of the theory have been made, or might be made in pursuit of some of the central conjectures of contemporary algebraic geometry and number theory. The name is taken from Tadao Tannaka and Tannaka–Krein duality, a theory about compact groups G and their representation theory. The theory was developed first in the school of Alexander Grothendieck. It was later reconsidered by Pierre Deligne, and some simplifications made. The pattern of the theory is that of Grothendieck's Galois theory, which is a theory about finite permutation representations of groups G which are profinite groups. The gist of the theory, which is rather elaborate in detail in the exposition of Saavedra Rivano, is that the fiber functor Φ of the Galois theory is replaced by a tensor functor T from C to K-Vect. The group of natural transformations of Φ to itself, which turns out to be a profinite group in the Galois theory, is replaced by the group (a priori only a monoid) of natural transformations of T into itself, that respect the tensor structure. This is by nature not an algebraic group, but an inverse limit of algebraic groups. (en)
  • 淡中圏(たんなかけん、tannakian category)とは与えられた体Kに関係するある付加的な構造を備えた、ある種のモノイダル圏Cである。そのような圏Cの役割は、K上定義された代数群Gの線形表現の圏をおおよそ見積もることにある。この理論の多数の応用が今までになされてきた。 名前の由来はコンパクト群Gとそれらの表現に関するである。この理論ははじめアレクサンドル・グロタンディークのセミナーで発展し、その後にドリーニュによって再考され、幾分簡易化された。理論は、副有限群あるいはコンパクト群Gの有限組み合わせ的な表現に関する理論であるグロタンディークのガロア理論に似ている。 より詳しくはSaavedra Rivanoの論評にあるが、理論の要点はガロア理論のをCからへのTに置き換えることにある。からそれ自身への自然変換がなす群、すなわちガロア理論における副有限群はTからそれ自身へのテンソル構造を保つ自然変換のなす群(単にモノイドとする場合もある)に置き換える。これは代数群ではないが、代数群の逆極限(すなわち副代数群)である。 (ja)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 55 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software