About: Valuation (geometry)     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : owl:Thing, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/2mkBSp2TuS

In geometry, a valuation is a finitely additive function on a collection of admissible subsets of a fixed set with values in an abelian semigroup. For example, the Lebesgue measure is a valuation on finite unions of convex bodies (that is, non-empty compact convex sets) of Euclidean space Other examples of valuations on finite unions of convex bodies are the surface area, the mean width, and the Euler characteristic.

AttributesValues
rdfs:label
  • Valuation (geometry) (en)
rdfs:comment
  • In geometry, a valuation is a finitely additive function on a collection of admissible subsets of a fixed set with values in an abelian semigroup. For example, the Lebesgue measure is a valuation on finite unions of convex bodies (that is, non-empty compact convex sets) of Euclidean space Other examples of valuations on finite unions of convex bodies are the surface area, the mean width, and the Euler characteristic. (en)
foaf:depiction
  • http://commons.wikimedia.org/wiki/Special:FilePath/Fundamental_theorem_of_algebraic_integral_geometry.svg
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
thumbnail
has abstract
  • In geometry, a valuation is a finitely additive function on a collection of admissible subsets of a fixed set with values in an abelian semigroup. For example, the Lebesgue measure is a valuation on finite unions of convex bodies (that is, non-empty compact convex sets) of Euclidean space Other examples of valuations on finite unions of convex bodies are the surface area, the mean width, and the Euler characteristic. In the geometric setting, often continuity (or smoothness) conditions are imposed on valuations, but there are also purely discrete facets of the theory. In fact, the concept of valuation has its origin in the dissection theory of polytopes and in particular Hilbert's third problem, which has grown into a rich theory, heavily reliant on advanced tools from abstract algebra. (en)
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is rdfs:seeAlso of
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is Wikipage disambiguates of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 51 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software