In mathematics, an analytic manifold, also known as a manifold, is a differentiable manifold with analytic transition maps. The term usually refers to real analytic manifolds, although complex manifolds are also analytic. In algebraic geometry, analytic spaces are a generalization of analytic manifolds such that singularities are permitted. For , the space of analytic functions, , consists of infinitely differentiable functions , such that the Taylor series
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Analytic manifold (en)
- 解析流形 (zh)
- Аналітичний многовид (uk)
|
rdfs:comment
| - 在數學中,一個解析流形(有時也記作 流形)是一個拓撲流形 配上一族坐標鄰域 ,使得坐標轉換 都是實解析映射。 (zh)
- Аналіти́чний многови́д — це многовид з аналітичними функціями переходу. (uk)
- In mathematics, an analytic manifold, also known as a manifold, is a differentiable manifold with analytic transition maps. The term usually refers to real analytic manifolds, although complex manifolds are also analytic. In algebraic geometry, analytic spaces are a generalization of analytic manifolds such that singularities are permitted. For , the space of analytic functions, , consists of infinitely differentiable functions , such that the Taylor series (en)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - In mathematics, an analytic manifold, also known as a manifold, is a differentiable manifold with analytic transition maps. The term usually refers to real analytic manifolds, although complex manifolds are also analytic. In algebraic geometry, analytic spaces are a generalization of analytic manifolds such that singularities are permitted. For , the space of analytic functions, , consists of infinitely differentiable functions , such that the Taylor series converges to in a neighborhood of , for all . The requirement that the transition maps be analytic is significantly more restrictive than that they be infinitely differentiable; the analytic manifolds are a proper subset of the smooth, i.e. , manifolds. There are many similarities between the theory of analytic and smooth manifolds, but a critical difference is that analytic manifolds do not admit analytic partitions of unity, whereas smooth partitions of unity are an essential tool in the study of smooth manifolds. A fuller description of the definitions and general theory can be found at differentiable manifolds, for the real case, and at complex manifolds, for the complex case. (en)
- 在數學中,一個解析流形(有時也記作 流形)是一個拓撲流形 配上一族坐標鄰域 ,使得坐標轉換 都是實解析映射。 (zh)
- Аналіти́чний многови́д — це многовид з аналітичними функціями переходу. (uk)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is Wikipage disambiguates
of | |
is foaf:primaryTopic
of | |