The Brumer–Stark conjecture is a conjecture in algebraic number theory giving a rough generalization of both the analytic class number formula for Dedekind zeta functions, and also of Stickelberger's theorem about the factorization of Gauss sums. It is named after and Harold Stark. It arises as a special case (abelian and first-order) of Stark's conjecture, when the place that splits completely in the extension is finite. There are very few cases where the conjecture is known to be valid. Its importance arises, for instance, from its connection with Hilbert's twelfth problem.
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Brumer–Stark conjecture (en)
- Conjecture de Brumer-Stark (fr)
|
rdfs:comment
| - The Brumer–Stark conjecture is a conjecture in algebraic number theory giving a rough generalization of both the analytic class number formula for Dedekind zeta functions, and also of Stickelberger's theorem about the factorization of Gauss sums. It is named after and Harold Stark. It arises as a special case (abelian and first-order) of Stark's conjecture, when the place that splits completely in the extension is finite. There are very few cases where the conjecture is known to be valid. Its importance arises, for instance, from its connection with Hilbert's twelfth problem. (en)
- La conjecture de Brumer-Stark est une conjecture en théorie algébrique des nombres donnant une généralisation à la fois de la formule analytique des nombres de classe pour les fonctions zêta de Dedekind et aussi du théorème de Stickelberger sur la factorisation des sommes de Gauss. Elle porte les noms d'Armand Brumer et Harold Stark. (fr)
|
dcterms:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
has abstract
| - The Brumer–Stark conjecture is a conjecture in algebraic number theory giving a rough generalization of both the analytic class number formula for Dedekind zeta functions, and also of Stickelberger's theorem about the factorization of Gauss sums. It is named after and Harold Stark. It arises as a special case (abelian and first-order) of Stark's conjecture, when the place that splits completely in the extension is finite. There are very few cases where the conjecture is known to be valid. Its importance arises, for instance, from its connection with Hilbert's twelfth problem. (en)
- La conjecture de Brumer-Stark est une conjecture en théorie algébrique des nombres donnant une généralisation à la fois de la formule analytique des nombres de classe pour les fonctions zêta de Dedekind et aussi du théorème de Stickelberger sur la factorisation des sommes de Gauss. Elle porte les noms d'Armand Brumer et Harold Stark. Elle apparaît comme un cas particulier (abélien et du premier ordre) de la (en), lorsque la place qui se scinde dans l'extension est finie. Il y a très peu de cas où la conjecture est connue comme vraie. Son importance découle, par exemple, de sa connexion avec le douzième problème de Hilbert. (fr)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is Wikipage disambiguates
of | |
is foaf:primaryTopic
of | |