rdfs:comment
| - في الرياضيات، مقلوب عدد أو معكوس ضربي (بالإنجليزية: Reciprocal أو Multiplicative inverse) هو العدد الذي إذا ضُرب بالعدد الأصلي يعطي القيمة 1، العنصر المحايد بالنسبة إلى عملية الضرب. يرمز لمقلوب العدد x بالرمز 1x أو x −1. مقلوب العدد هو . على سبيل المثال، مقلوب 5 هو 1/5. (ar)
- En matemàtiques, l'invers multiplicatiu, recíproc o simplement invers d'un nombre x, expressat com ¹⁄x o x −1, és un nombre que multiplicat per x dona com a resultat 1. L'invers d'una fracció a⁄b és b⁄a. L'invers d'un nombre real consisteix a dividir 1 entre el nombre en qüestió. Per exemple, el recíproc de 5 és un cinquè (¹⁄₅ o 0,2), i el recíproc de 0,25 és 4 (1 dividit per 0,25). (ca)
- Στα μαθηματικά, ο πολλαπλασιαστικός αντίστροφος ενός αριθμού , συμβολίζεται με ή , και είναι ένας αριθμός που όταν πολλαπλασιαστεί επί δίνει αποτέλεσμα το ουδέτερο στοιχείο του πολλαπλασιασμού, δηλαδή τη μονάδα, : . Ο πολλαπλασιαστικός αντίστροφος είναι μία ειδική περίπτωση του αντιστρόφου στοιχείου ενός συνόλου ως προς μία δυαδική πράξη . Σε έναν δακτύλιο (όπου υπάρχουν δύο πράξεις), ο πολλαπλασιαστικός αντίστροφος ενός στοιχείου αναφέρεται στον αντίστροφο ως προς την πράξη , ενώ ο αναφέρεται στον αντίστροφο ως προς την πράξη . (el)
- La inverso de nombro estas la rezulto de la divido de 1 per la nombro. Ekzemple: La inverso de du estas duono. En pli ĝenerala senco, la nocio inverso ankaŭ estas uzata en jenaj ekzemplaj frazoj:
* La inverso de multiplikado estas dividado.
* La inverso de derivaĵo estas malderivaĵo.
* La inverso de funkcio estas ĝia (se ĝi ekzistas).
* La inverso de pluvolvi la vidbendon estas retrovolvi ĝin.
* La inversa elemento de a rilate al operacio • estas elemento a-1 tia ke a • a-1 = a-1 • a = e kie e estas la neŭtrala elemento. (eo)
- Der Kehrwert (auch der reziproke Wert oder das Reziproke) einer von verschiedenen Zahl ist in der Arithmetik diejenige Zahl, die mit multipliziert die Zahl ergibt; er wird als oder notiert. (de)
- Matematikan, x zenbaki baten alderantzizko zenbakia 1⁄x edo x −1 adierazitako beste zenbaki bat da, zeina bider x eginez gero 1 ematen duen. 0 zenbakiak ez du alderantzizko zenbakirik. Edozein zenbaki konplexuaren alderantzizko zenbakia zenbaki konplexua ere da. Edozein zenbaki errealen alderantzizko zenbakia zenbaki erreala ere da eta edozein zenbaki arrazionalena arrazionala ere. (eu)
- En mathématiques, l'inverse d'un élément x (s'il existe) est le nom donné à l'élément symétrique, lorsque la loi est notée multiplicativement. Dans le cas réel, il s'agit du nombre qui, multiplié par x, donne 1. On le note x−1 ou 1/x. Par exemple, dans , l'inverse de 3 est , puisque . (fr)
- In matematica, con reciproco di un numero si indica il numero che moltiplicato per dia come risultato 1; e può essere indicato come (frazione unitaria) o anche . Generalmente quando si fa riferimento ai reciproci, si intendono soltanto i reciproci dei numeri interi: , ma in realtà è utilizzato anche per indicare il reciproco di un numero decimale, ad esempio il reciproco di è (it)
- 逆数(ぎゃくすう、英: reciprocal)とは、ある数に掛け算した結果が 1 となる数である。すなわち、数 x の逆数 y とは次のような関係を満たす。 通常、x の逆数は分数の記法を用いて 1/x のように表されるか、冪の記法を用いて x−1 のように表される。 1 を乗法に関する単位元と見れば、逆数とは乗法逆元(じょうほうぎゃくげん、英: multiplicative inverse)の一種であり、乗法逆元とは一般化された逆数である。 上述の式から明らかなように、x と y の役割を入れ替えれば、x は y の逆数であると言える。従って、x の逆数が y であるとき y の逆数は x である。 x が 0 である場合、任意の数との積は 0 になるため、(0 ≠ 1 であれば)0 に対する逆数は存在しない。 また、任意の x について必ずしもその逆数が存在するとは限らない。たとえば、自然数の範囲では上述の関係を満たす数は x = y = 1 以外には存在しない。0 を除く任意の数 x について逆数が常に存在するようなものには、有理数や実数、複素数がある。これらのように四則演算が自由にできる集合を体と呼ぶ。 逆数は乗法における逆元であるが、加法における逆元として反数がある。 1つの二項演算を持つ集合であって左右の逆元が常に存在するもの(代数的構造)はと呼ばれる。 (ja)
- Liczba odwrotna do danej liczby to taka liczba że Jest to zgodne z ogólną definicją elementu odwrotnego mnożenia w algebrze, zapisywanego zwykle jako lub W liczbach rzeczywistych jest on określany przez funkcję homograficzną W arytmetyce modularnej również można określić element odwrotny modulo jeśli i są względnie pierwsze. Element taki można uzyskać korzystając z rozszerzonego algorytmu Euklidesa dla i Pozwala to określić działanie dzielenia w dla pierwszych (i częściowo dla innych ) jako mnożenie przez odwrotność. (pl)
- 數學上,一个数的倒数(英語:reciprocal),是指一個与相乘的积为1的数,记为或。在抽象代数中,倒数所对应的抽象化概念是乘法群的某个元素的“乘法逆”,也就是相对于群中“乘法”运算的逆元素。 汉语中,名词倒数一般用来表示数字的乘法逆,一般在各种数域如:有理数、实数、复数,以及模n的同余类所构成的乘法群中使用。在复数域(实数域)中,每个除了0以外的复数(实数)都存在倒数:只要用某个数自身除1(也就是说用1除以某个数),即可得到它的倒数。用数学记号表示的话: 一个非零的复数(实数)的倒数定义为使得成立的复数(实数),记作例如,的倒数是,因为 每个复数(实数)只有一个倒数。一般来说,并不是对所有的代数结构中的乘法运算,每个元素都存在其乘法逆,如对矩阵乘法来说,秩小于阶数的矩阵就没有乘法逆,或者在环中,元素3和18也沒有乘法逆。一个环中的一个元素有乘法逆当且仅当它是可逆元,而它的乘法逆是唯一的当且仅当它不是一个零因子,或者说当它是一个正则元。每个非零元素都有乘法逆的环称为除环。每个非零元素都至多有一个乘法逆的环称为。 (zh)
- Обра́тное число́ (обратное значение, обратная величина) к данному числу x — это число, умножение которого на x даёт единицу. Принятая запись: или . Два числа, произведение которых равно 1, называются взаимно обратными. Примеры. Единственные вещественные числа, совпадающие со своими обратными: и Обратное для числа 2 равно Обратное для числа равно Обратное для числа равно Обратное число не следует путать с противоположным или с обратной функцией. Понятие обратного элемента можно определить не только для чисел, но и для других математических объектов. (ru)
- Обернене число для x, позначається 1/x або x−1, це число, добуток якого з x породжує одиницю. Оберненим дробу a/b буде b/a. Для отримання оберненого для дійсного числа треба розділити 1 на число. Наприклад, обернене для 5 є 1/5, а для 0.25 це 1 розділений на 0.25, або 4. Функція f(x), яка відображає x в 1/x, це один з найпростіших прикладів самооберненої функції. (uk)
- V matematice se jako převrácená (neboli reciproká) hodnota čísla x označuje to číslo, které po vynásobení číslem x dává jako výsledek 1. Převrácená hodnota čísla x se označuje jako nebo . Platí tedy, že . Převrácenou hodnotu komplexního čísla v algebraickém tvaru lze vyjádřit jako , v goniometrickém tvaru V abstraktní algebře je převrácená hodnota označována jako inverzní prvek vzhledem k násobení, jedná se o speciální případ inverzního prvku. (cs)
- En matemáticas, el inverso multiplicativo, recíproco o inverso de un número x no nulo, es el número, denotado como 1⁄x o x −1, que multiplicado por x da 1 como resultado. En los números reales el 0 no tiene inverso multiplicativo. El inverso de un número real también es real, el inverso de un número racional es racional y todo número complejo tiene un inverso que es un número complejo.La división es la operación inversa de la multiplicación, si por definición se cumple que: , y además . Es decir: (es)
- In mathematics, a multiplicative inverse or reciprocal for a number x, denoted by 1/x or x−1, is a number which when multiplied by x yields the multiplicative identity, 1. The multiplicative inverse of a fraction a/b is b/a. For the multiplicative inverse of a real number, divide 1 by the number. For example, the reciprocal of 5 is one fifth (1/5 or 0.2), and the reciprocal of 0.25 is 1 divided by 0.25, or 4. The reciprocal function, the function f(x) that maps x to 1/x, is one of the simplest examples of a function which is its own inverse (an involution). (en)
- Dalam matematika, invers perkalian atau timbal balik untuk bilangan x, dilambangkan dengan 1/x atau x−1, adalah bilangan yang ketika dikalikan dengan x menghasilkan , 1. Pembalikan perkalian dari sebuah pecahan a/b adalah b/a. Untuk pembalikan perkalian bilangan real, bagilah 1 dengan bilangan tersebut. Misalnya, kebalikan dari 5 adalah seperlima (1/5 atau 0,2), dan kebalikan dari 0,25 adalah 1 dibagi 0,25, atau 4. Fungsi invers, fungsi f(x) dengan peta x untuk 1/x, adalah salah satu contoh paling sederhana dari suatu fungsi yang merupakan kebalikannya sendiri (sebuah ). (in)
- 수학에서, 어떤 수의 곱셈 역원(-逆元, 영어: multiplicative inverse) 또는 역수(逆數, 영어: reciprocal)는 그 수와 곱하면 곱셈 항등원(1)이 되는 수를 말한다. 두 수의 곱이 1이 될 때, 한 수를 다른 수의 역수라고 한다. 의 곱셈 역원은 와 같이 표기하거나 와 같이 쓸 수 있다. 곱하여 1이 되는 두 수를 '서로 곱셈 역원'이라 하기도 하는데, 이는 곱셈 역원 관계가 대칭 관계이기 때문에 가능한 표현이다. 즉, 만약 가 의 곱셈 역원이라면, 역시 의 곱셈 역원이다. 예를 들어, 유리수 의 곱셈 역원은 이다. 실수 의 곱셈 역원은 이며, 복소수 의 곱셈 역원은 이다. 보다 일반적으로, 유리수 의 곱셈 역원은 항상 이며, 복소수 의 곱셈 역원은 항상 이다. 0이 아닌 복소수의 곱셈 역원은 항상 존재하며, 또한 항상 유일하다. 그러나 0은 곱셈 역원을 가질 수 없는데, 이는 0에 아무런 수를 곱하여도 0이 되기 때문이다. 각 실수를 그 곱셈 역원으로 대응시키는 함수 는 의 예이다. 이러한 이름은 변숫값과 함숫값이 반비례 관계를 이룬다는 데에서 왔다. (ko)
- Em matemática, o inverso multiplicativo de um número x é o número y que, multiplicado por x, gera a identidade multiplicativa. Note-se que estamos falando de qualquer operação binária que tenha o nome de multiplicação, que não precisa ser comutativa, mas deve ter elemento neutro. No caso de uma operação não comutativa, o inverso deve ser tal que . Quando este inverso é único (por exemplo, o inverso multiplicativo de um número real), ele é representado por: ou ou (pt)
- Het omgekeerde (ook: de omgekeerde) of de reciproque (vaak geschreven als 'reciproke') van een getal of grootheid is 1 gedeeld door dat getal of die grootheid. De omgekeerde van een breuk ontstaat door teller en noemer te verwisselen.
* Het omgekeerde van 7 is 1/7 en het omgekeerde van 2/3 is 3/2.
* Het product van twee getallen die elkaars omgekeerde zijn, is gelijk aan 1. Enkele SI-eenheden zijn het omgekeerde van andere eenheden: (nl)
- Ett reciprokt tal, reciprokt värde, reciprok funktion är en matematisk benämning för den multiplikativa inversen av ett tal x eller funktion f(x), det vill säga det tal x-1 = 1/x sådant att x⋅x-1 = 1, eller den funktion f(x)-1 = 1/f(x) sådan att f(x)⋅ f(x)-1 = 1. Observera att f(x) -1 = 1/f(x) ej ska förväxlas med f -1(x) som är den inversa funktionen sådan att f(x) = y och f -1(y) = x. (sv)
|