In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function. It can be defined in terms of the Riemann–Siegel theta function and the Riemann zeta function by
Attributes | Values |
---|
rdfs:label
| - Función Z (es)
- Z function (en)
- Z-funktionen (sv)
|
rdfs:comment
| - En matemática, la función Z es una función usada para el estudio de lafunción zeta de Riemann a lo largo de la recta crítica, donde la parte real del argumento es 1/2. Es también llamada función Z de Riemann-Siegel o función zeta de Hardy.Ésta puede ser definida en términos de la y de la función zeta de Riemann como: (es)
- Inom matematiken är Z-funktionen en speciell funktion som används då man studerar Riemanns zetafunktion vid den kritiska linjen där den reella delen av argumentet är en halv. Den är även känd som Riemann-Siegels Z-funktion, Riemann-Siegels zetafunktion, Hardys funktion, Hardys Z-funktion och Hardys zetafunktion. Den kan definieras med hjälp av Riemann–Siegels thetafunktion och Riemanns zetafunktion som (sv)
- In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function. It can be defined in terms of the Riemann–Siegel theta function and the Riemann zeta function by (en)
|
foaf:depiction
| |
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
dbp:wikiPageUsesTemplate
| |
thumbnail
| |
title
| - Riemann–Siegel Functions (en)
|
urlname
| - Riemann-SiegelFunctions (en)
|
has abstract
| - En matemática, la función Z es una función usada para el estudio de lafunción zeta de Riemann a lo largo de la recta crítica, donde la parte real del argumento es 1/2. Es también llamada función Z de Riemann-Siegel o función zeta de Hardy.Ésta puede ser definida en términos de la y de la función zeta de Riemann como: (es)
- In mathematics, the Z function is a function used for studying the Riemann zeta function along the critical line where the argument is one-half. It is also called the Riemann–Siegel Z function, the Riemann–Siegel zeta function, the Hardy function, the Hardy Z function and the Hardy zeta function. It can be defined in terms of the Riemann–Siegel theta function and the Riemann zeta function by It follows from the functional equation of the Riemann zeta function that the Z function is real for real values of t. It is an even function, and real analytic for real values. It follows from the fact that the Riemann-Siegel theta function and the Riemann zeta function are both holomorphic in the critical strip, where the imaginary part of t is between −1/2 and 1/2, that the Z function is holomorphic in the critical strip also. Moreover, the real zeros of Z(t) are precisely the zeros of the zeta function along the critical line, and complex zeros in the Z function critical strip correspond to zeros off the critical line of the Riemann zeta function in its critical strip. (en)
- Inom matematiken är Z-funktionen en speciell funktion som används då man studerar Riemanns zetafunktion vid den kritiska linjen där den reella delen av argumentet är en halv. Den är även känd som Riemann-Siegels Z-funktion, Riemann-Siegels zetafunktion, Hardys funktion, Hardys Z-funktion och Hardys zetafunktion. Den kan definieras med hjälp av Riemann–Siegels thetafunktion och Riemanns zetafunktion som (sv)
|
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is foaf:primaryTopic
of | |