About: Eilenberg–Mazur swindle     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : dbo:Software, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/7LCiWQFwe2

In mathematics, the Eilenberg–Mazur swindle, named after Samuel Eilenberg and Barry Mazur, is a method of proof that involves paradoxical properties of infinite sums. In geometric topology it was introduced by Mazur and is often called the Mazur swindle. In algebra it was introduced by Samuel Eilenberg and is known as the Eilenberg swindle or Eilenberg telescope (see telescoping sum). The Eilenberg–Mazur swindle is similar to the following well known joke "proof" that 1 = 0: 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0

AttributesValues
rdf:type
rdfs:label
  • Eilenberg–Mazur swindle (en)
  • Бесконечный телескоп (ru)
rdfs:comment
  • In mathematics, the Eilenberg–Mazur swindle, named after Samuel Eilenberg and Barry Mazur, is a method of proof that involves paradoxical properties of infinite sums. In geometric topology it was introduced by Mazur and is often called the Mazur swindle. In algebra it was introduced by Samuel Eilenberg and is known as the Eilenberg swindle or Eilenberg telescope (see telescoping sum). The Eilenberg–Mazur swindle is similar to the following well known joke "proof" that 1 = 0: 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0 (en)
  • Бесконечный телескоп — трюк в доказательстве, основанный на парадоксальных свойствах бесконечных сумм.В геометрической топологии он был использован Барри Мазуром и часто называется мошенничеством Мазура или телескоп Мазура (см. телескопическая сумма).В алгебре он был введен Сэмюэлем Эйленбергом и известен как мошенничество Эйленберга или телескоп Эйленберга. Идея основана на следующем шуточном доказательстве того, что 1 = 0: 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0 (ru)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
Link from a Wikipage to an external page
sameAs
txt
  • yes (en)
dbp:wikiPageUsesTemplate
authorlink
  • Barry Mazur (en)
last
  • Mazur (en)
year
has abstract
  • In mathematics, the Eilenberg–Mazur swindle, named after Samuel Eilenberg and Barry Mazur, is a method of proof that involves paradoxical properties of infinite sums. In geometric topology it was introduced by Mazur and is often called the Mazur swindle. In algebra it was introduced by Samuel Eilenberg and is known as the Eilenberg swindle or Eilenberg telescope (see telescoping sum). The Eilenberg–Mazur swindle is similar to the following well known joke "proof" that 1 = 0: 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0 This "proof" is not valid as a claim about real numbers because Grandi's series 1 − 1 + 1 − 1 + ... does not converge, but the analogous argument can be used in some contexts where there is some sort of "addition" defined on some objects for which infinite sums do make sense,to show that if A + B = 0 then A = B = 0. (en)
  • Бесконечный телескоп — трюк в доказательстве, основанный на парадоксальных свойствах бесконечных сумм.В геометрической топологии он был использован Барри Мазуром и часто называется мошенничеством Мазура или телескоп Мазура (см. телескопическая сумма).В алгебре он был введен Сэмюэлем Эйленбергом и известен как мошенничество Эйленберга или телескоп Эйленберга. Идея основана на следующем шуточном доказательстве того, что 1 = 0: 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0 Разумеется так рассуждать нельзя, потому как ряд Гранди 1 − 1 + 1 − 1 + ... не сходится.Однако этот трюк можно использовать для некоторых объектов если подобные бесконечные суммы имеют смысл. (ru)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
is Wikipage redirect of
is known for of
is known for of
is foaf:primaryTopic of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3332 as of Dec 5 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 56 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software