In mathematics, the Eilenberg–Mazur swindle, named after Samuel Eilenberg and Barry Mazur, is a method of proof that involves paradoxical properties of infinite sums. In geometric topology it was introduced by Mazur and is often called the Mazur swindle. In algebra it was introduced by Samuel Eilenberg and is known as the Eilenberg swindle or Eilenberg telescope (see telescoping sum). The Eilenberg–Mazur swindle is similar to the following well known joke "proof" that 1 = 0: 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0
Attributes | Values |
---|
rdf:type
| |
rdfs:label
| - Eilenberg–Mazur swindle (en)
- Бесконечный телескоп (ru)
|
rdfs:comment
| - In mathematics, the Eilenberg–Mazur swindle, named after Samuel Eilenberg and Barry Mazur, is a method of proof that involves paradoxical properties of infinite sums. In geometric topology it was introduced by Mazur and is often called the Mazur swindle. In algebra it was introduced by Samuel Eilenberg and is known as the Eilenberg swindle or Eilenberg telescope (see telescoping sum). The Eilenberg–Mazur swindle is similar to the following well known joke "proof" that 1 = 0: 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0 (en)
- Бесконечный телескоп — трюк в доказательстве, основанный на парадоксальных свойствах бесконечных сумм.В геометрической топологии он был использован Барри Мазуром и часто называется мошенничеством Мазура или телескоп Мазура (см. телескопическая сумма).В алгебре он был введен Сэмюэлем Эйленбергом и известен как мошенничество Эйленберга или телескоп Эйленберга. Идея основана на следующем шуточном доказательстве того, что 1 = 0: 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0 (ru)
|
dct:subject
| |
Wikipage page ID
| |
Wikipage revision ID
| |
Link from a Wikipage to another Wikipage
| |
Link from a Wikipage to an external page
| |
sameAs
| |
txt
| |
dbp:wikiPageUsesTemplate
| |
authorlink
| |
last
| |
year
| |
has abstract
| - In mathematics, the Eilenberg–Mazur swindle, named after Samuel Eilenberg and Barry Mazur, is a method of proof that involves paradoxical properties of infinite sums. In geometric topology it was introduced by Mazur and is often called the Mazur swindle. In algebra it was introduced by Samuel Eilenberg and is known as the Eilenberg swindle or Eilenberg telescope (see telescoping sum). The Eilenberg–Mazur swindle is similar to the following well known joke "proof" that 1 = 0: 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0 This "proof" is not valid as a claim about real numbers because Grandi's series 1 − 1 + 1 − 1 + ... does not converge, but the analogous argument can be used in some contexts where there is some sort of "addition" defined on some objects for which infinite sums do make sense,to show that if A + B = 0 then A = B = 0. (en)
- Бесконечный телескоп — трюк в доказательстве, основанный на парадоксальных свойствах бесконечных сумм.В геометрической топологии он был использован Барри Мазуром и часто называется мошенничеством Мазура или телескоп Мазура (см. телескопическая сумма).В алгебре он был введен Сэмюэлем Эйленбергом и известен как мошенничество Эйленберга или телескоп Эйленберга. Идея основана на следующем шуточном доказательстве того, что 1 = 0: 1 = 1 + (−1 + 1) + (−1 + 1) + ... = 1 − 1 + 1 − 1 + ... = (1 − 1) + (1 − 1) + ... = 0 Разумеется так рассуждать нельзя, потому как ряд Гранди 1 − 1 + 1 − 1 + ... не сходится.Однако этот трюк можно использовать для некоторых объектов если подобные бесконечные суммы имеют смысл. (ru)
|
gold:hypernym
| |
prov:wasDerivedFrom
| |
page length (characters) of wiki page
| |
foaf:isPrimaryTopicOf
| |
is Link from a Wikipage to another Wikipage
of | |
is Wikipage redirect
of | |
is known for
of | |
is known for
of | |
is foaf:primaryTopic
of | |