About: Mercer's theorem     Goto   Sponge   NotDistinct   Permalink

An Entity of Type : yago:Theorem106752293, within Data Space : dbpedia.demo.openlinksw.com associated with source document(s)
QRcode icon
http://dbpedia.demo.openlinksw.com/c/4porArefv4

In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive semi-definite kernel.

AttributesValues
rdf:type
rdfs:label
  • Satz von Mercer (de)
  • Théorème de Mercer (fr)
  • Mercer's theorem (en)
rdfs:comment
  • Der Satz von Mercer ist eine mathematische Aussage aus dem Teilgebiet der Funktionalanalysis. Er ist benannt nach dem Mathematiker James Mercer und besagt, dass der Integralkern eines positiven, selbstadjungierten Integraloperators als konvergente Reihe über seine Eigenwerte und Eigenvektoren dargestellt werden kann. (de)
  • En mathématiques et plus précisément en analyse fonctionnelle, le théorème de Mercer est une représentation d'une fonction symétrique de type positif par le carré d'une série convergente de produits de fonctions. Ce théorème est l'un des résultats phares de James Mercer. C'est un outil théorique important dans la théorie des équations intégrales. Il est aussi utilisé dans la théorie hilbertienne des processus stochastiques (voir (en) et Transformée de Karhunen-Loève). (fr)
  • In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive semi-definite kernel. (en)
dct:subject
Wikipage page ID
Wikipage revision ID
Link from a Wikipage to another Wikipage
sameAs
dbp:wikiPageUsesTemplate
id
  • p/m063440 (en)
title
  • Mercer theorem (en)
has abstract
  • Der Satz von Mercer ist eine mathematische Aussage aus dem Teilgebiet der Funktionalanalysis. Er ist benannt nach dem Mathematiker James Mercer und besagt, dass der Integralkern eines positiven, selbstadjungierten Integraloperators als konvergente Reihe über seine Eigenwerte und Eigenvektoren dargestellt werden kann. (de)
  • En mathématiques et plus précisément en analyse fonctionnelle, le théorème de Mercer est une représentation d'une fonction symétrique de type positif par le carré d'une série convergente de produits de fonctions. Ce théorème est l'un des résultats phares de James Mercer. C'est un outil théorique important dans la théorie des équations intégrales. Il est aussi utilisé dans la théorie hilbertienne des processus stochastiques (voir (en) et Transformée de Karhunen-Loève). (fr)
  • In mathematics, specifically functional analysis, Mercer's theorem is a representation of a symmetric positive-definite function on a square as a sum of a convergent sequence of product functions. This theorem, presented in, is one of the most notable results of the work of James Mercer (1883–1932). It is an important theoretical tool in the theory of integral equations; it is used in the Hilbert space theory of stochastic processes, for example the Karhunen–Loève theorem; and it is also used to characterize a symmetric positive semi-definite kernel. (en)
gold:hypernym
prov:wasDerivedFrom
page length (characters) of wiki page
foaf:isPrimaryTopicOf
is Link from a Wikipage to another Wikipage of
Faceted Search & Find service v1.17_git147 as of Sep 06 2024


Alternative Linked Data Documents: ODE     Content Formats:   [cxml] [csv]     RDF   [text] [turtle] [ld+json] [rdf+json] [rdf+xml]     ODATA   [atom+xml] [odata+json]     Microdata   [microdata+json] [html]    About   
This material is Open Knowledge   W3C Semantic Web Technology [RDF Data] Valid XHTML + RDFa
OpenLink Virtuoso version 08.03.3331 as of Sep 2 2024, on Linux (x86_64-generic-linux-glibc212), Single-Server Edition (378 GB total memory, 53 GB memory in use)
Data on this page belongs to its respective rights holders.
Virtuoso Faceted Browser Copyright © 2009-2024 OpenLink Software