rdfs:comment
| - 数学におけるリース=ソリンの定理(リース=ソリンのていり、英: Riesz-Thorin theorem)とは、「作用素の補間」に関する一結果で、しばしばリース=ソリンの補間定理(Riesz-Thorin interpolation theorem)やリース=ソリンの凸性定理(Riesz-Thorin convexity theorem)と呼ばれる。リース・マルツェルとその指導学生の名にちなむ。 この定理は、の間の線形写像のノルムを評価する。この定理の有用性は、のいくつかが、その他の空間よりも簡単な構造を備えることに由来する。通常はそのような空間として、ヒルベルト空間である や、 などが考えられる。したがって、リース=ソリンの定理を使うことで、2つの簡単な場合に成り立つ定理を、より複雑な場合へ拡張することができる。マルチンケーヴィッチの定理は同様の定理であるが、それはある非線形写像のクラスに対しても適用される。 (ja)
- In mathematics, the Riesz–Thorin theorem, often referred to as the Riesz–Thorin interpolation theorem or the Riesz–Thorin convexity theorem, is a result about interpolation of operators. It is named after Marcel Riesz and his student G. Olof Thorin. (en)
- En mathématiques, le théorème de Riesz-Thorin, souvent désigné sous le nom de théorème d'interpolation de Riesz-Thorin ou encore de théorème de convexité de Riesz-Thorin, est un résultat sur l'interpolation des opérateurs. Il est nommé d'après Marcel Riesz et son élève (en). (fr)
- Теорема Риса — Торина — утверждение о свойствах интерполяционных пространств. Была сформулирована в 1926 году Марселем Рисом, и в операторной форме сформулирована и доказана в 1939 году. Согласно теореме, для двух пространств и с мерами и соответственно и двух банаховых пространств комплекснозначных функций , суммируемых с -й степенью по мерам , тройка банаховых пространств является нормально интерполяционной типа относительно тройки , если: и , Доказательство теоремы использует теорему о трёх прямых из теории аналитических функций. (ru)
|